-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
235 lines (195 loc) · 8.1 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import torchnet.meter.confusionmeter as cm
# Data augmentation and normalization for training
# Normalization for validation & test
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
data_dir = os.path.join(os.getcwd(), "images")
splits = ['train', 'val', 'test']
image_datasets = {f: datasets.ImageFolder(os.path.join(data_dir, f),
data_transforms[f])
for f in splits}
dataloaders = {f: torch.utils.data.DataLoader(image_datasets[f], batch_size=32,
shuffle=True, num_workers=0)
for f in splits}
dataset_sizes = {f: len(image_datasets[f]) for f in splits}
class_names = image_datasets['train'].classes
#print(class_names)
#print(dataset_sizes)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#print(device)
#lists for graph generation
epoch_counter_train = []
epoch_counter_val = []
train_loss = []
val_loss = []
train_acc = []
val_acc = []
#Train the model
def train_model(model, criterion, optimizer, scheduler, num_epochs):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch +1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
tv_split = ['train', 'val']
for split in tv_split:
if split == 'train':
optimizer.step()
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[split]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(split == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if split == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
#For graph generation
if split == "train":
train_loss.append(running_loss/dataset_sizes[split])
train_acc.append(running_corrects.double() / dataset_sizes[split])
epoch_counter_train.append(epoch)
if split == "val":
val_loss.append(running_loss/ dataset_sizes[split])
val_acc.append(running_corrects.double() / dataset_sizes[split])
epoch_counter_val.append(epoch)
epoch_loss = running_loss / dataset_sizes[split]
epoch_acc = running_corrects.double() / dataset_sizes[split]
#for printing
if split == "train":
epoch_loss = running_loss / dataset_sizes[split]
epoch_acc = running_corrects.double() / dataset_sizes[split]
if split == "val":
epoch_loss = running_loss / dataset_sizes[split]
epoch_acc = running_corrects.double() / dataset_sizes[split]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
split, epoch_loss, epoch_acc))
# deep copy the best model
if split == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
#Using a model pre-trained on ImageNet and replacing it's final linear layer
#For resnet50
model_ft = models.resnet50(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 15)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Using Adam as the parameter optimizer
optimizer_ft = optim.Adam(model_ft.parameters(), lr = 0.001, betas=(0.9, 0.999))
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
#Plot the train & validation losses
plt.figure(1)
plt.title("Training Vs Validation Losses")
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.plot(epoch_counter_train,train_loss,color = 'r', label="Training Loss")
plt.plot(epoch_counter_val,val_loss,color = 'g', label="Validation Loss")
plt.legend()
plt.show()
#Plot the accuracies in train & validation
plt.figure(2)
plt.title("Training Vs Validation Accuracies")
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.plot(epoch_counter_train,train_acc,color = 'r', label="Training Accuracy")
plt.plot(epoch_counter_val,val_acc,color = 'g', label="Validation Accuracy")
plt.legend()
plt.show()
#Test the accuracy with test data
correct = 0
total = 0
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['test']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model_ft(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
#Class wise testing accuracy
class_correct = list(0. for i in range(15))
class_total = list(0. for i in range(15))
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['test']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model_ft(inputs)
_, predicted = torch.max(outputs, 1)
point = (predicted == labels).squeeze()
for j in range(len(labels)):
label = labels[j]
class_correct[label] += point[j].item()
class_total[label] += 1
for i in range(15):
print('Accuracy of %5s : %2d %%' % (
class_names[i], 100 * class_correct[i] / class_total[i]))
#Get the confusion matrix for testing data
confusion_matrix = cm.ConfusionMeter(15)
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['test']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model_ft(inputs)
_, predicted = torch.max(outputs, 1)
confusion_matrix.add(predicted, labels)
print(confusion_matrix.conf)