-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathLexRank.py
407 lines (297 loc) · 12.4 KB
/
LexRank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import math
import numpy
import copy
import nltk
from bs4 import BeautifulSoup
import re
class LexRank(object):
def __init__(self):
self.text = Preprocessing()
self.sim = DocumentSim()
def score(self, sentences, idfs, CM, t):
Degree = [0 for i in sentences]
L = [0 for i in sentences]
n = len(sentences)
for i in range(n):
for j in range(n):
CM[i][j] = self.sim.sim(sentences[i], sentences[j], idfs)
if CM[i][j] > t:
CM[i][j] = 1
Degree[i] += 1
else:
CM[i][j] = 0
for i in range(n):
for j in range(n):
CM[i][j] = CM[i][j]/float(Degree[i])
L = self.PowerMethod(CM, n, 0.2)
normalizedL = self.normalize(L)
for i in range(len(normalizedL)):
score = normalizedL[i]
sentence = sentences[i]
sentence.setLexRankScore(score)
return sentences
def PowerMethod(self, CM, n, e):
Po = numpy.array([1/float(n) for i in range(n)])
t = 0
delta = float('-inf')
M = numpy.array(CM)
while delta < e:
t = t + 1
M = M.transpose()
P1 = numpy.dot(M, Po)
diff = numpy.subtract(P1, Po)
delta = numpy.linalg.norm(diff)
Po = numpy.copy(P1)
return list(Po)
def buildMatrix(self, sentences):
# build our matrix
CM = [[0 for s in sentences] for s in sentences]
for i in range(len(sentences)):
for j in range(len(sentences)):
CM[i][j] = 0
return CM
def buildSummary(self, sentences, n):
sentences = sorted(sentences,key=lambda x: x.getLexRankScore(), reverse=True)
summary = []
# sum_len = 0
# while sum_len < n:
# summary += [sentences[i]]
# sum_len += len(sentences[i].getStemmedWords())
for i in range(n):
summary += [sentences[i]]
return summary
def normalize(self, numbers):
max_number = max(numbers)
normalized_numbers = []
for number in numbers:
normalized_numbers.append(number/max_number)
return normalized_numbers
def main(self, n, path):
sentences = self.text.openDirectory(path)
idfs = self.sim.IDFs(sentences)
CM = self.buildMatrix(sentences)
sentences = self.score(sentences, idfs,CM, 0.1)
summary = self.buildSummary(sentences, n)
return summary
class sentence(object):
def __init__(self, docName, stemmedWords, OGwords):
self.stemmedWords = stemmedWords
self.docName = docName
self.OGwords = OGwords
self.wordFrequencies = self.sentenceWordFreqs()
self.lexRankScore = None
def getStemmedWords(self):
return self.stemmedWords
def getDocName(self):
return self.docName
def getOGwords(self):
return self.OGwords
def getWordFreqs(self):
return self.wordFrequencies
def getLexRankScore(self):
return self.LexRankScore
def setLexRankScore(self, score):
self.LexRankScore = score
def sentenceWordFreqs(self):
wordFreqs = {}
for word in self.stemmedWords:
if word not in wordFreqs.keys():
wordFreqs[word] = 1
else:
wordFreqs[word] = wordFreqs[word] + 1
return wordFreqs
class Preprocessing(object):
def processFile(self, file_path_and_name):
try:
f = open(file_path_and_name,'rb')
text = f.read()
# soup = BeautifulSoup(text,"html.parser")
# text = soup.getText()
# text = re.sub("APW19981212.0848","",text)
# text = re.sub("APW19981129.0668","",text)
# text = re.sub("NEWSWIRE","",text)
text_1 = re.search(r"<TEXT>.*</TEXT>",text, re.DOTALL)
text_1 = re.sub("<TEXT>\n","",text_1.group(0))
text_1 = re.sub("\n</TEXT>","",text_1)
# replace all types of quotations by normal quotes
text_1 = re.sub("\n"," ",text_1)
text_1 = re.sub(" +"," ",text_1)
# text_1 = re.sub("\'\'","\"",text_1)
# text_1 = re.sub("\`\`","\"",text_1)
sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
lines = sent_tokenizer.tokenize(text_1.strip())
text_1 = lines
sentences = []
porter = nltk.PorterStemmer()
for sent in lines:
OG_sent = sent[:]
sent = sent.strip().lower()
line = nltk.word_tokenize(sent)
stemmed_sentence = [porter.stem(word) for word in line]
stemmed_sentence = filter(lambda x: x!='.'and x!='`'and x!=','and x!='?'and x!="'"
and x!='!' and x!='''"''' and x!="''" and x!="'s", stemmed_sentence)
if stemmed_sentence != []:
sentences.append(sentence(file_path_and_name, stemmed_sentence, OG_sent))
return sentences
except IOError:
print 'Oops! File not found',file_path_and_name
return [sentence(file_path_and_name, [],[])]
def use_full_names(self, doc):
names = self.getNames(doc)
for i in range(len(doc)):
doc[i] = self.getLongName(doc[i], names)
return doc
def getNames(self, doc):
doc = ' '.join(doc).split()
tags = st.tag(doc)
doc = ' '.join(doc)
names = []
flag1 = False
for i in range(1, len(tags)):
tag1 = tags[i-1]
tag2 = tags[i]
if i+1 < len(tags):
tag3 = tags[i+1]
if tag1[1] == 'PERSON' and tag2[1] == 'PERSON' and tag3[1] =='PERSON':
name = tag1[0] + ' ' + tag2[0] + ' ' + tag3[0]
if doc.find(name) > -1:
names.append(name)
i = i + 3
flag1 = True
if tag1[1] == 'PERSON' and tag2[1] == 'PERSON' and not flag1 and i<len(tags):
name = tag1[0] + ' ' + tag2[0]
if doc.find(name) > -1:
names.append(name)
i = i + 2
else:
i = i + 1
return names
def getLongName(self, sentence, names):
sentence = sentence.split(" ")
i = 0
while i < len(sentence):
word1 = sentence[i]
for name in names:
flag = False
if i+1 != len(sentence):
word2 = sentence[i+1]
_2words = word1 + ' ' + word2
if self.begins_or_ends_with(_2words, name) and _2words != name:
if i == len(sentence)-2:
print sentence[i-1] + ' ' +_2words, name
sentence[i] = name
sentence = sentence[:i] + [name]
flag = True
else:
temp = _2words + ' ' + sentence[i+2]
if temp != name and temp[:len(temp)-1] != name:
sentence = sentence[:i] + [name] + sentence[i+2:]
flag = True
# check one word at a time
if self.begins_or_ends_with(word1, name) and not flag:
if i == len(sentence)-1:
sentence[i] = name
else:
if sentence[i+1] != name.split(" ")[1]:
sentence[i] = name
i +=1
return ' '.join(sentence)
def begins_or_ends_with(self, word, name):
return name[:len(word)] == word or name[len(name)-len(word):] == word
def get_file_path(self, file_name):
for root, dirs, files in os.walk(os.getcwd()):
for name in files:
if name == file_name:
return os.path.join(root,name)
print "Error! file was not found!!"
return ""
def get_all_files(self, path = None):
retval = []
if path == None:
path = os.getcwd()
for root, dirs, files in os.walk(path):
for name in files:
retval.append(os.path.join(root,name))
return retval
def openDirectory(self, path=None):
file_paths = self.get_all_files(path)
sentences = []
for file_path in file_paths:
sentences = sentences + self.processFile(file_path)
return sentences
class DocumentSim(object):
def __init__(self):
self.text = Preprocessing()
def TFs(self, sentences):
tfs = {}
for sent in sentences:
wordFreqs = sent.getWordFreqs()
for word in wordFreqs.keys():
if tfs.get(word, 0) != 0:
tfs[word] = tfs[word] + wordFreqs[word]
else:
tfs[word] = wordFreqs[word]
return tfs
def TFw(self, word, sentence):
return sentence.getWordFreqs().get(word, 0)
def IDFs(self, sentences):
N = len(sentences)
idf = 0
idfs = {}
words = {}
w2 = []
for sent in sentences:
for word in sent.getStemmedWords():
if sent.getWordFreqs().get(word, 0) != 0:
words[word] = words.get(word, 0)+ 1
for word in words:
n = words[word]
try:
w2.append(n)
idf = math.log10(float(N)/n)
except ZeroDivisionError:
idf = 0
idfs[word] = idf
return idfs
def IDF(self, word, idfs):
return idfs[word]
def sim(self, sentence1, sentence2, idfs):
numerator = 0
denom1 = 0
denom2 = 0
for word in sentence2.getStemmedWords():
numerator += self.TFw(word, sentence2) * self.TFw(word, sentence1) * self.IDF(word, idfs) ** 2
for word in sentence1.getStemmedWords():
denom2 += (self.TFw(word, sentence1) * self.IDF(word, idfs)) ** 2
for word in sentence2.getStemmedWords():
denom1 += (self.TFw(word, sentence2) * self.IDF(word, idfs)) ** 2
try:
return numerator / (math.sqrt(denom1) * math.sqrt(denom2))
except ZeroDivisionError:
return float("-inf")
if __name__=='__main__':
lexRank = LexRank()
doc_folders = os.walk("Documents").next()[1]
total_summary = []
for i in range(len(doc_folders)):
path = os.path.join("Documents", '') + doc_folders[i]
doc_summary = []
summary_length = 6
summary = []
summary = lexRank.main(summary_length, path)
print i
for sentences in summary:
# print "\n", sentences.getOGwords(), "\n"
text_append =re.sub("\n","",sentences.getOGwords())
# text_append = text_append.strip("'")
text_append = text_append + " "
doc_summary.append(text_append)
total_summary.append(doc_summary)
os.chdir("Lexrank_results")
for i in range(len(doc_folders)):
myfile = doc_folders[i]+".LexRank"
f = open(myfile,'w')
for j in range(summary_length):
f.write(total_summary[i][j])
f.close()