forked from petercorke/spatialmath-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SE2.m
560 lines (497 loc) · 20.8 KB
/
SE2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
%SE2 Representation of 2D rigid-body motion
%
% This subclasss of RTBPose is an object that represents rigid-body motion in 2D.
% Internally this is a 3x3 homogeneous transformation matrix (3x3) belonging to
% the group SE(2).
%
% Constructor methods::
% SE2 general constructor
% SE2.exp exponentiate an se(2) matrix
% SE2.rand random transformation
% new new SE2 object
%
% Display and print methods::
% animate ^graphically animate coordinate frame for pose
% display ^print the pose in human readable matrix form
% plot ^graphically display coordinate frame for pose
% print ^print the pose in single line format
%
% Group operations::
% * ^mtimes: multiplication (group operator, transform point)
% / ^mrdivide: multiply by inverse
% ^ ^mpower: exponentiate (integer only):
% inv inverse
% prod ^product of elements
%
% Methods::
% det determinant of matrix component
% eig eigenvalues of matrix component
% log logarithm of rotation matrix
% inv inverse
% simplify* apply symbolic simplication to all elements
% interp interpolate between poses
% theta rotation angle
%
% Information and test methods::
% dim ^returns 2
% isSE ^returns true
% issym ^test if rotation matrix has symbolic elements
% SE2.isa test if matrix is SE(2)
%
% Conversion methods::
% char* convert to human readable matrix as a string
% SE2.convert convert SE2 object or SE(2) matrix to SE2 object
% double convert to rotation matrix
% R convert to rotation matrix
% SE3 convert to SE3 object with zero translation
% SO2 convert rotational part to SO2 object
% T convert to homogeneous transformation matrix
% Twist convert to Twist object
% t get.t: convert to translation column vector
%
% Compatibility methods::
% isrot2 ^returns false
% ishomog2 ^returns true
% tr2rt ^convert to rotation matrix and translation vector
% t2r ^convert to rotation matrix
% transl2 ^translation as a row vector
% trprint2 ^print single line representation
% trplot2 ^plot coordinate frame
% tranimate2 ^animate coordinate frame
%
% ^ inherited from RTBPose class.
%
% See also SO2, SE3, RTBPose.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
classdef SE2 < SO2
properties (Dependent = true)
t
end
methods
function obj = SE2(varargin)
%SE2.SE2 Construct an SE(2) object
%
% Constructs an SE(2) pose object that contains a 3x3 homogeneous transformation
% matrix.
%
% T = SE2() is the identity element, a null motion.
%
% T = SE2(X, Y) is an object representing pure translation defined by X and Y.
%
% T = SE2(XY) is an object representing pure translation defined by XY
% (2x1). If XY (Nx2) returns an array of SE2 objects, corresponding to
% the rows of XY.
%
% T = SE2(X, Y, THETA) is an object representing translation, X and Y, and
% rotation, angle THETA.
%
% T = SE2(XY, THETA) is an object representing translation, XY (2x1), and
% rotation, angle THETA.
%
% T = SE2(XYT) is an object representing translation, XYT(1) and XYT(2),
% and rotation angle XYT(3). If XYT (Nx3) returns an array of SE2 objects, corresponding to
% the rows of XYT.
%
% T = SE2(T) is an object representing translation and rotation defined by
% the SE(2) homogeneous transformation matrix T (3x3). If T (3x3xN) returns an
% array (1xN) of SE2 objects, corresponding to the third index of T.
%
% T = SE2(R) is an object representing pure rotation defined by the
% SO(2) rotation matrix R (2x2)
%
% T = SE2(R, XY) is an object representing rotation defined by the
% orthonormal rotation matrix R (2x2) and position given by XY (2x1)
%
% T = SE2(T) is a copy of the SE2 object T. If T (Nx1) returns an array of SE2 objects,
% corresponding to the index of T.
%
% Options::
% 'deg' Angle is specified in degrees
%
% Notes::
% - Arguments can be symbolic
% - The form SE2(XY) is ambiguous with SE2(R) if XY has 2 rows, the second form is assumed.
% - The form SE2(XYT) is ambiguous with SE2(T) if XYT has 3 rows, the second form is assumed.
% - R and T are checked to be valid SO(2) or SE(2) matrices.
opt.deg = false;
[opt,args] = tb_optparse(opt, varargin);
if opt.deg
scale = pi/180.0;
else
scale = 1;
end
% if any of the arguments is symbolic the result will be symbolic
if any( cellfun(@(x) isa(x, 'sym'), args) )
obj.data = sym(obj.data);
end
obj.data = eye(3,3);
switch length(args)
case 0
% null motion
return
case 1
% 1 argument
a = args{1};
if isvec(a, 2)
% (t)
obj.data = [ 1 0 a(1); 0 1 a(2); 0 0 1];
elseif isvec(a, 3)
% ([x y th])
a = a(:);
obj.data(1:2,1:2) = rot2(a(3)*scale);
obj.t = a(1:2);
elseif SO2.isa(a)
% (R)
obj.data(1:2,1:2) = a;
elseif SE2.isa(a)
% (T)
for i=1:size(a, 3)
obj(i).data = a(:,:,i);
end
elseif isa(a, 'SE2')
% (SE2)
for i=1:length(a)
obj(i).data = a(i).data;
end
elseif any( numcols(a) == [2 3] )
for i=1:numrows(a)
obj(i) = SE2(a(i,:));
end
return
else
error('SMTB:SE2:badarg', 'unknown arguments');
end
case 2
% 2 arguments
a = args{1}; b = args{2};
if isscalar(a) && isscalar(b)
% (x,y)
obj.data = [ 1 0 a; 0 1 b; 0 0 1];
elseif isvec(a,2) && isscalar(b)
% ([x y], th)
obj.data = [ rot2(b*scale) a(:); 0 0 1];
elseif SO2.isa(a) && isvec(b,2)
% (R, t)
obj.data = [a b(:); 0 0 1];
else
error('SMTB:SE3:badarg', 'unknown arguments');
end
case 3
% 3 arguments
a = args{1}; b = args{2}; c = args{3};
if isscalar(a) && isscalar(b) && isscalar(c)
% (x, y, th)
obj.data = [ rot2(c*scale) [a b]'; 0 0 1];
else
error('SMTB:SE3:badarg', 'unknown arguments');
end
otherwise
error('SMTB:SE3:badarg', 'unknown arguments');
end
% add the last row if required
% if numrows(obj.data) == 2
% obj.data = [obj.data; 0 0 1];
% end
assert(all(size(obj(1).data) == [3 3]), 'SMTB:SE2:SE2', 'created wrong size data element');
%% HACK
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GET AND SET
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function t = get.t(obj)
%SE2.t Get translational component
%
% P.t is a column vector (2x1) representing the translational component of
% the rigid-body motion described by the SE2 object P.
%
% Notes::
% - If P is a vector the result is a MATLAB comma separated list, in this
% case use P.transl().
%
% See also SE2.transl.
t = obj.data(1:2,3);
end
function o = set.t(obj, t)
%SE2.t Set translational component
%
% P.t = TV sets the translational component of the rigid-body motion
% described by the SE2 object P to TV (2x1).
%
% Notes::
% - TV can be a row or column vector.
% - If TV contains a symbolic value then the entire matrix becomes
% symbolic.
if isa(t, 'sym') && ~isa(obj.data, 'sym')
obj.data = sym(obj.data);
end
obj.data(1:2,3) = t;
o = obj;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% conversion methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v = xyt(obj)
%SE2.xyt Extract configuration
%
% XYT = P.xyt() is a column vector (3x1) comprising the minimum three
% configuration parameters of this rigid-body motion: translation (x,y)
% and rotation theta.
% TODO VECTORISE
v = obj.t;
v(3) = atan2(obj.data(2,1), obj.data(1,1));
end
function [tx,ty] = transl(obj)
%SE2.t Get translational component
%
% TV = P.transl() is a row vector (1x2) representing the translational component of
% the rigid-body motion described by the SE2 object P. If P is a vector of
% objects (1xN) then TV (Nx2) will have one row per object element.
if nargout == 1 || nargout == 0
tx = [obj.t]';
else
t = obj.t;
tx = t(1);
ty = t(2);
end
end
function T = T(obj)
%SE2.T Get homogeneous transformation matrix
%
% T = P.T() is the homogeneous transformation matrix (3x3) associated with the
% SE2 object P, and has zero translational component. If P is a vector
% (1xN) then T (3x3xN) is a stack of homogeneous transformation matrices, with the third
% dimension corresponding to the index of P.
%
% See also SO2.T.
for i=1:length(obj)
T(:,:,i) = obj(i).data;
end
end
function t = SE3(obj)
%SE2.SE3 Lift to 3D
%
% Q = P.SE3() is an SE3 object formed by lifting the rigid-body motion
% described by the SE2 object P from 2D to 3D. The rotation is about the
% z-axis, and the translation is within the xy-plane.
%
% See also SE3.
t = SE3();
t.data(1:2,1:2) = obj.data(1:2,1:2);
t.data(1:2,4) = obj.data(1:2,3);
end
function out = SO2(obj)
%SE2.SO2 Extract SO(2) rotation
%
% Q = SO2(P) is an SO2 object that represents the rotational component of
% the SE2 rigid-body motion.
%
% See also SE2.R.
out = SO2( obj.R );
end
function tw = Twist(obj)
%SE2.Twist Convert to Twist object
%
% TW = P.Twist() is the equivalent Twist object. The elements of the twist are the unique
% elements of the Lie algebra of the SE2 object P.
%
% See also SE2.log, Twist.
tw = Twist( obj.log );
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% SE(2) OPERATIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function it = inv(obj)
%SE2.inv Inverse of SE2 object
%
% Q = inv(P) is the inverse of the SE2 object P.
%
% Notes::
% - This is formed explicitly, no matrix inverse required.
% - This is a group operator: input and output in the SE(2) group.
% - P*Q will be the identity group element (zero motion, identity matrix).
it = SE2( obj.R', -obj.R'*obj.t);
end
function S = log(obj)
%SE2.log Lie algebra
%
% se2 = P.log() is the Lie algebra corresponding to the SE2 object P. It is
% an augmented skew-symmetric matrix (3x3).
%
% See also SE2.Twist, logm, skewa, vexa.
S = logm(obj.data);
end
function Ti = interp(obj1, varargin)
%SE2.interp Interpolate between SO2 objects
%
% P1.interp(P2, s) is an SE2 object which is an interpolation
% between poses represented by SE2 objects P1 and P2. s varies from 0
% (P1) to 1 (P2). If s is a vector (1xN) then the result will be a vector
% of SE2 objects.
%
% Notes::
% - It is an error if S is outside the interval 0 to 1.
%
% See also SO2.angle.
if isa(varargin{1}, 'SE2')
% interp(SE2, SE2, s) interpolate between given values
obj2 = varargin{1};
varargin = varargin(2:end);
try
Ti = SE2( trinterp2(obj1.T, obj2.T, varargin{:}) );
catch me
switch me.identifier
case 'SMTB:trinterp2:badarg'
throw( MException('SMTB:SE2:interp:badarg', 'value of S outside interval [0,1]') );
otherwise
rethrow(me);
end
end
else
% interp(SE2, s) interpolate between null and given value
try
Ti = SE2( trinterp2( obj1.T, varargin{:}) );
catch me
switch me.identifier
case 'SMTB:trinterp2:badarg'
throw( MException('SMTB:SE2:interp:badarg', 'value of S outside interval [0,1]') );
otherwise
rethrow(me);
end
end
end
end
function print(obj, varargin)
for T=obj
theta = atan2(T.data(2,1), T.data(1,1)) * 180/pi;
fprintf('t = (%.4g, %.4g), theta = %.4g deg\n', T.t, theta);
end
end
function n = new(obj, varargin)
%SE2.new Construct a new object of the same type
%
% P2 = P.new(X) creates a new object of the same type as P, by invoking the SE2 constructor on the matrix
% X (3x3).
%
% P2 = P.new() as above but defines a null motion.
%
% Notes::
% - Serves as a dynamic constructor.
% - This method is polymorphic across all RTBPose derived classes, and
% allows easy creation of a new object of the same class as an existing
% one without needing to explicitly determine its type.
%
% See also SE3.new, SO3.new, SO2.new.
n = SE2(varargin{:});
end
end
methods (Static)
% Static factory methods for constructors from exotic representations
function obj = exp(s)
%SE2.exp Construct SE2 from Lie algebra
%
% SE2.exp(SIGMA) is the SE2 rigid-body motion corresponding to the se(2)
% Lie algebra element SIGMA (3x3).
%
% SE3.exp(TW) as above but the Lie algebra is represented
% as a twist vector TW (1x1).
%
% Notes::
% - TW is the non-zero elements of X.
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p25-31.
%
%
% See also trexp2, skewa.
obj = SE2( trexp2(s) );
end
function T = convert(tr)
%SE2.check Convert to SE2
%
% Q = SE2.convert(X) is an SE2 object equivalent to X where X is either
% an SE2 object, or an SE(2) homogeneous transformation matrix (3x3).
if isa(tr, 'SE2')
T = tr;
elseif SE2.isa(tr)
T = SE2(tr);
else
error('expecting an SE2 or 3x3 matrix');
end
end
function h = isa(tr, rtest)
%SE2.ISA Test if matrix is SE(2)
%
% SE2.isa(T) is true (1) if the argument T is of dimension 3x3 or 3x3xN, else
% false (0).
%
% SE2.isa(T, true) as above, but also checks the validity of the rotation
% sub-matrix.
%
% Notes::
% - This is a class method.
% - The first form is a fast, but incomplete, test for a transform in SE(3).
% - There is ambiguity in the dimensions of SE2 and SO3 in matrix form.
%
% See also SO3.ISA, SE2.ISA, SO2.ISA, ishomog2.
d = size(tr);
if ndims(tr) >= 2
h = all(d(1:2) == [3 3]);
if h && nargin > 1 && ~isa(tr, 'sym')
h = SO3.isa( tr(1:2,1:2) );
h = h && all(tr(4,:) == [0 0 0 1]); % test the bottom row
end
else
h = false;
end
end
function T = rand()
%SE2.rand Construct a random SE(2) object
%
% SE2.rand() is an SE2 object with a uniform random translation and a
% uniform random orientation. Random numbers are in the interval [-1 1]
% and rotations in the interval [-pi pi].
%
% See also RAND.
T = SE2(rand(1,3)*diag([2 2 2*pi]) + [-1 -1 -pi]);
end
end
end