forked from petercorke/spatialmath-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SE3.m
988 lines (893 loc) · 38.6 KB
/
SE3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
%SE3 Representation of 3D rigid-body motion
%
% This subclasss of RTBPose is an object that represents rigid-body motion in 2D.
% Internally this is a 3x3 homogeneous transformation matrix (4x4) belonging to
% the group SE(3).
%
% Constructor methods::
% SE3 general constructor
% SE3.angvec rotation about vector
% SE3.eul rotation defined by Euler angles
% SE3.exp exponentiate an se(3) matrix
% SE3.oa rotation defined by o- and a-vectors
% SE3.Rx rotation about x-axis
% SE3.Ry rotation about y-axis
% SE3.Rz rotation about z-axis
% SE3.rand random transformation
% SE3.rpy rotation defined by roll-pitch-yaw angles
% new new SE3 object
%
% Display and print methods::
% animate ^graphically animate coordinate frame for pose
% display ^print the pose in human readable matrix form
% plot ^graphically display coordinate frame for pose
% print ^print the pose in single line format
%
% Group operations::
% * ^mtimes: multiplication (group operator, transform point)
% .* ^^times: multiplication (group operator) followed by normalization
% / ^mrdivide: multiply by inverse
% ./ ^^rdivide: multiply by inverse followed by normalization
% ^ ^mpower: xponentiate (integer only)
% .^ ^power: exponentiate followed by normalization
% inv inverse
% prod ^product of elements
%
% Methods::
% det determinant of matrix component
% eig eigenvalues of matrix component
% log logarithm of rotation matrixr>=0 && r<=1ub
% simplify ^apply symbolic simplication to all elements
% Ad adjoint matrix (6x6)
% increment update pose based on incremental motion
% interp interpolate poses
% velxform compute velocity transformation
% interp interpolate between poses
% ctraj Cartesian motion
% norm normalize the rotation submatrix
%
% Information and test methods::
% dim* returns 4
% isSE* returns true
% issym* test if rotation matrix has symbolic elements
% isidentity test for null motion
% SE3.isa check if matrix is SE(3)
%
% Conversion methods::
% char convert to human readable matrix as a string
% SE3.convert convert SE3 object or SE(3) matrix to SE3 object
% double convert to SE(3) matrix
% R convert rotation part to SO(3) matrix
% SO3 convert rotation part to SO3 object
% T convert to SE(3) matrix
% t translation column vector
% toangvec convert to rotation about vector form
% todelta convert to differential motion vector
% toeul convert to Euler angles
% torpy convert to roll-pitch-yaw angles
% tv translation column vector for vector of SE3
% UnitQuaternion convert to UnitQuaternion object
%
% Compatibility methods::
% homtrans apply to vector
% isrot ^returns false
% ishomog ^returns true
% t2r ^convert to rotation matrix
% tr2rt ^convert to rotation matrix and translation vector
% tr2eul ^^convert to Euler angles
% tr2rpy ^^convert to roll-pitch-yaw angles
% tranimate ^animate coordinate frame
% transl translation as a row vector
% trnorm ^^normalize the rotation matrix
% trplot ^plot coordinate frame
% trprint ^print single line representation
%
% Other operators::
% + ^plus: elementwise addition, result is a matrix
% - ^minus: elementwise subtraction, result is a matrix
% == ^eq: test equality
% ~= ^ne: test inequality
%
% - ^ inherited from RTBPose
% - ^^ inherited from SO3
%
% Properties::
% n get.n: normal (x) vector
% o get.o: orientation (y) vector
% a get.a: approach (z) vector
% t get.t: translation vector
%
% For single SE3 objects only, for a vector of SE3 objects use the
% equivalent methods
% t translation as a 3x1 vector (read/write)
% R rotation as a 3x3 matrix (read)
%
% Notes::
% - The properies R, t are implemented as MATLAB dependent properties.
% When applied to a vector of SE3 object the result is a comma-separated
% list which can be converted to a matrix by enclosing it in square
% brackets, eg [T.t] or more conveniently using the method T.transl
%
% See also SO3, SE2, RTBPose.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
%TODO
% interp
% animate
% chain
% animate
% jacobian
% log
% norm
% print
%
% all vectorised!
%
%
% Superclass, provides char,display, get/set R,t,T
classdef SE3 < SO3
properties (Dependent = true)
t
% T
%R
end
methods
function obj = SE3(varargin)
%SE3.SE3 Create an SE(3) object
%
% Constructs an SE(3) pose object that contains a 4x4 homogeneous transformation matrix.
%
% T = SE3() is the identity element, a null motion.
%
% T = SE3(X, Y, Z) is an object representing pure translation defined by X,
% Y and Z.
%
% T = SE3(XYZ) is an object representing pure translation defined by XYZ
% (3x1). If XYZ (Nx3) returns an array of SE3 objects, corresponding to
% the rows of XYZ.
%
% T = SE3(T) is an object representing translation and rotation defined by
% the homogeneous transformation matrix T (3x3). If T (3x3xN) returns an array of SE3 objects,
% corresponding to the third index of T.
%
% T = SE3(R, XYZ) is an object representing rotation defined by the
% orthonormal rotation matrix R (3x3) and position given by XYZ (3x1).
%
% T = SE3(T) is a copy of the SE3 object T. If T (Nx1) returns an array of SE3 objects,
% corresponding to the index of T.
%
% Options::
% 'deg' Angle is specified in degrees
%
% Notes::
% - Arguments can be symbolic.
% - R and T are checked to be valid SO(2) or SE(2) matrices.
obj.data = eye(4,4);
args = varargin;
% if any of the arguments is symbolic the result will be symbolic
if any( cellfun(@(x) isa(x, 'sym'), args) )
obj.data = sym(obj.data);
end
switch length(args)
case 0
% ()
obj.data = eye(4,4);
return;
case 1
a = args{1};
if isvec(a, 3)
% (t)
obj.t = a(:);
elseif SE3.isa(a)
% (SE3)
for i=1:size(a, 3)
obj(i).data = a(:,:,i);
end
elseif isa(a, 'SE3')
% (T)
for i=1:length(a)
obj(i).data = a(i).data;
end
elseif numcols(a) == 3
% SE3( xyz )
for i=1:length(a)
%obj(i).data = SE3(a(i,:));
obj(i).data(1:3,4) = a(i,:)';
end
else
error('SMTB:SE3:badarg', 'unknown arguments');
end
case 2
a = args{1}; b = args{2};
if (isrot(a) || SO3.isa(a)) && isvec(b,3)
% (R, t)
if isrot(a)
obj.data(1:3,1:3) = a;
else
obj.R(1:3,1:3) = a.R;
end
obj.data(1:3,4) = b(:);
else
error('SMTB:SE3:badarg', 'unknown arguments');
end
case 3
a = args{1}; b = args{2}; c = args{3};
obj.data(1:3,4) = [a; b; c];
otherwise
error('SMTB:SE3:badarg', 'too many arguments');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GET AND SET
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function o = get.t(obj)
o = obj.data(1:3,4);
end
function o = set.t(obj, t)
%SE3.t Get translation vector
%
% T = P.t is the translational part of SE3 object as a 3-element column
% vector.
%
% Notes::
% - If applied to a vector will return a comma-separated list, use
% .tv() instead.
%
% See also SE3.tv, transl.
% TODO CHECKING
obj.data(1:3,4) = t(:);
o = obj;
end
function [tx,ty,tz] = transl(obj)
%SE3.transl Get translation vector
%
% T = P.transl() is the translational part of SE3 object as a 3-element row
% vector. If P is a vector (1xN) then
% the rows of T (Mx3) are the translational component of the
% corresponding pose in the sequence.
%
% [X,Y,Z] = P.transl() as above but the translational part is returned as
% three components. If P is a vector (1xN) then X,Y,Z (1xN) are the
% translational components of the corresponding pose in the sequence.
%
% Notes::
% - The .t method only works for a single pose object, on a vector it
% returns a comma-separated list.
%
% See also SE3.t, transl.
if nargout == 1 || nargout == 0
tx = [obj.t]';
else
t = obj.t;
tx = t(1);
ty = t(2);
tz = t(3);
end
end
function TT = T(obj)
%SO2.T Get homogeneous transformation matrix
%
% T = P.T() is the homogeneous transformation matrix (3x3) associated with the
% SO2 object P, and has zero translational component. If P is a vector
% (1xN) then T (3x3xN) is a stack of rotation matrices, with the third
% dimension corresponding to the index of P.
%
% See also SO2.T.
TT = double(obj);
end
% set.R
% handle assignment SE3 = SE3, SE3=4x4, can'toverload equals
function t = tv(obj)
%SE.tv Return translation for a vector of SE3 objects
%
% P.tv is a column vector (3x1) representing the translational part of the
% SE3 pose object P. If P is a vector of SE3 objects (Nx1) then the result
% is a matrix (3xN) with columns corresponding to the elements of P.
%
% See also SE3.t.
%t = zeros(3,length(obj)); FAILS FOR SYMBOLIC CASE
for i=1:length(obj)
t(:,i) = obj(i).data(1:3,4);
end
end
function v = isidentity(obj)
%SE3.identity Test if identity element
%
% P.isidentity() is true if the SE3 object P corresponds to null motion,
% that is, its homogeneous transformation matrix is identity.
v = all(all(obj.T == eye(4,4)));
end
function T = increment(obj, v)
%SE3.increment Apply incremental motion to an SE3 pose
%
% P1 = P.increment(D) is an SE3 pose object formed by compounding the
% SE3 pose with the incremental motion described by D (6x1).
%
% The vector D=(dx, dy, dz, dRx, dRy, dRz) represents infinitessimal translation
% and rotation, and is an approximation to the instantaneous spatial velocity
% multiplied by time step.
%
% See also SE3.todelta, SE3.delta, DELTA2TR, TR2DELTA.
T = obj .* SE3(delta2tr(v));
end
function J = velxform(obj, varargin)
%SE3.velxform Velocity transformation
%
% Transform velocity between frames. A is the world frame, B is the body
% frame and C is another frame attached to the body. PAB is the pose of
% the body frame with respect to the world frame, PCB is the pose of the
% body frame with respect to frame C.
%
% J = PAB.velxform() is a 6x6 Jacobian matrix that maps velocity from frame
% B to frame A.
%
% J = PCB.velxform('samebody') is a 6x6 Jacobian matrix that maps velocity
% from frame C to frame B. This is also the adjoint of PCB.
opt.samebody = false;
opt = tb_optparse(opt, varargin);
R = obj.R;
if opt.samebody
J = [
R skew(obj.t)*R
zeros(3,3) R
];
else
J = [
R zeros(3,3)
zeros(3,3) R
];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% STANDARD SE(3) MATRIX OPERATIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function it = inv(obj)
%SE3.inv Inverse of SE3 object
%
% Q = inv(P) is the inverse of the SE3 object P.
%
% Notes::
% - This is formed explicitly, no matrix inverse required.
% - This is a group operator: input and output in the SE(3)) group.
% - P*Q will be the identity group element (zero motion, identity matrix).
it = SE3( obj.R', -obj.R'*obj.t);
end
function Ti = interp(obj1, varargin)
%SE3.interp Interpolate SE3 poses
%
% P1.interp(P2, s) is an SE3 object representing an interpolation
% between poses represented by SE3 objects P1 and P2. s varies from 0
% (P1) to 1 (P2). If s is a vector (1xN) then the result will be a vector
% of SO3 objects.
%
% P1.interp(P2, N) as above but returns a vector (1xN) of SE3 objects
% interpolated between P1 and P2 in N steps.
%
% Notes::
% - The rotational interpolation (slerp) can be interpretted
% as interpolation along a great circle arc on a sphere.
% - It is an error if any element of S is outside the interval 0 to 1.
%
% See also TRINTERP, CTRAJ, UnitQuaternion.
if isa(varargin{1}, 'SE3')
% interp(SE3, SE3, s) interpolate between given values
obj2 = varargin{1};
varargin = varargin(2:end);
try
Ti = SE3( trinterp(obj1.T, obj2.T, varargin{:}) );
catch me
switch me.identifier
case 'SMTB:trinterp:badarg'
throw( MException('SMTB:SE3:interp:badarg', 'value of S outside interval [0,1]') );
otherwise
rethrow(me);
end
end
else
% interp(SE3, s) interpolate between null and given value
try
T = trinterp(obj1.T, varargin{:});
catch me
switch me.identifier
case 'SMTB:trinterp:badarg'
throw( MException('SMTB:SE3:interp:badarg', 'value of S outside interval [0,1]') );
otherwise
rethrow(me);
end
end
Ti = SE3(T);
end
end
function traj = ctraj(T0, T1, t)
%SE3.ctraj Cartesian trajectory between two poses
%
% TC = T0.ctraj(T1, N) is a Cartesian trajectory defined by a vector of SE3
% objects (1xN) from pose T0 to T1, both described by SE3 objects. There
% are N points on the trajectory that follow a trapezoidal velocity profile
% along the trajectory.
%
% TC = CTRAJ(T0, T1, S) as above but the elements of S (Nx1) specify the
% fractional distance along the path, and these values are in the range [0 1].
% The i'th point corresponds to a distance S(i) along the path.
%
% Notes::
% - In the second case S could be generated by a scalar trajectory generator
% such as TPOLY or LSPB (default).
% - Orientation interpolation is performed using quaternion interpolation.
%
% Reference::
% Robotics, Vision & Control, Sec 3.1.5,
% Peter Corke, Springer 2011
%
% See also LSPB, MSTRAJ, TRINTERP, CTRAJ, UnitQuaternion.interp.
assert(isa(T1, 'SE3'), 'second transform must be SE3');
% distance along path is a smooth function of time
if isscalar(t)
s = lspb(0, 1, t);
else
s = t(:);
end
for i=1:length(s)
traj(i) = T0.interp(T1, s(i));
end
end
function m = log(obj)
%SE3.log Lie algebra
%
% P.log() is the Lie algebra corresponding to the SE3 object P. It is
% an augmented skew-symmetric matrix (4x4).
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p42-43.
%
% See also SE3.logs, SE3.Twist, trlog, logm, skewa, vexa.
m = trlog(obj.T);
end
function m = logs(obj)
%SE3.log Lie algebra in vector form
%
% P.logs() is the Lie algebra expressed as a vector (1x6)
% corresponding to the SE2 object P. The vector comprises the
% translational elements followed by the unique elements of the
% skew-symmetric upper-left 3x3 submatrix.
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p42-43.
%
% See also SE3.log, SE3.Twist, trlog, logm.
m = trlog(obj.T);
m = [m(1:3,4); vex(m(1:3,1:3))]';
end
function tw = Twist(obj)
%SE3.Twist Convert to Twist object
%
% TW = P.Twist() is the equivalent Twist object. The elements of the twist are the unique
% elements of the Lie algebra of the SE3 object P.
%
% See also SE3.logs, Twist.
tw = Twist( obj.log );
end
function m = Ad(obj)
%SE3.Ad Adjoint matrix
%
% A = P.Ad() is the adjoint matrix (6x6) corresponding to the pose P.
%
% See also Twist.ad.
m = [
obj.R skew(obj.t)*obj.R
zeros(3,3) obj.R
];
end
%% ad function
% function m = Ad(obj)
% m = obj.R;
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rotation conversion wrappers
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function out = toeul(obj, varargin)
%SE3.toeul Convert to Euler angles
%
% EUL = P.toeul(OPTIONS) are the ZYZ Euler angles (1x3) corresponding to
% the rotational part of the SE3 object P. The 3 angles EUL=[PHI,THETA,PSI]
% correspond to sequential rotations about the Z, Y and Z axes
% respectively.
%
% If P is a vector (1xN) then each row of EUL corresponds to an element of
% the vector.
%
% Options::
% 'deg' Compute angles in degrees (radians default)
% 'flip' Choose first Euler angle to be in quadrant 2 or 3.
%
% Notes::
% - There is a singularity for the case where THETA=0 in which case PHI is arbitrarily
% set to zero and PSI is the sum (PHI+PSI).
%
% See also SO3.toeul, SE3.torpy, EUL2TR, TR2RPY.
out = obj.SO3.toeul(varargin{:});
end
function out = torpy(obj, varargin)
%SE3.RPY Convert to roll-pitch-yaw angles
%
% RPY = P.torpy(options) are the roll-pitch-yaw angles (1x3) corresponding
% to the rotational part of the SE3 object P. The 3 angles RPY=[R,P,Y]
% correspond to sequential rotations about the Z, Y and X axes
% respectively.
%
% If P is a vector (1xN) then each row of RPY corresponds to an element of
% the vector.
%
% Options::
% 'deg' Compute angles in degrees (radians default)
% 'xyz' Return solution for sequential rotations about X, Y, Z axes
% 'yxz' Return solution for sequential rotations about Y, X, Z axes
%
% Notes::
% - There is a singularity for the case where P=pi/2 in which case R is arbitrarily
% set to zero and Y is the sum (R+Y).
%
% See also SE3.torpy, SE3.toeul, rpy2tr, tr2eul.
out = obj.SO3.torpy(varargin{:});
end
function [a,b] = toangvec(obj, varargin)
%SE3.toangvec Convert to angle-vector form
%
% [THETA,V] = P.toangvec(OPTIONS) is rotation expressed in terms of an
% angle THETA (1x1) about the axis V (1x3) equivalent to the rotational
% part of the SE3 object P.
%
% If P is a vector (1xN) then THETA (Kx1) is a vector of angles for
% corresponding elements of the vector and V (Kx3) are the corresponding
% axes, one per row.
%
% Options::
% 'deg' Return angle in degrees
%
% Notes::
% - If no output arguments are specified the result is displayed.
%
% See also ANGVEC2R, ANGVEC2TR, TRLOG.
if nargout == 1
a = obj.SO3.toangvec(varargin{:});
else
[a,b] = obj.SO3.toangvec(varargin{:});
end
end
function d = todelta(P1, P2)
%SE3.todelta Convert SE3 object to differential motion vector
%
% D = P0.todelta(P1) is the differential motion (6x1) corresponding to
% infinitessimal motion (in the P0 frame) from SE3 pose P0 to P1.
%
% The vector D=(dx, dy, dz, dRx, dRy, dRz) represents infinitessimal translation
% and rotation, and is an approximation to the instantaneous spatial velocity
% multiplied by time step.
%
% D = P.todelta() as above but the motion is from the world frame to the SE3
% pose P.
%
% Notes::
% - D is only an approximation to the motion, and assumes
% that P0 ~ P1 or P ~ eye(4,4).
% - can be considered as an approximation to the effect of spatial velocity over a
% a time interval, average spatial velocity multiplied by time.
%
% See also SE3.increment, TR2DELTA, DELTA2TR.
if nargin == 1
d = tr2delta(P1.T);
elseif nargin == 2
d = tr2delta(P1.T, P2.T);
end
end
% conversion methods
function s = SO3(obj)
%SE3.SO3 Convert rotational component to SO3 object
%
% P.SO3 is an SO3 object representing the rotational component of the SE3
% pose P. If P is a vector (Nx1) then the result is a vector (Nx1).
for i=1:length(obj)
s(i) = SO3();
s(i).data= obj(i).R;
end
end
function n = new(obj, varargin)
%SE3.new Construct a new object of the same type
%
% P2 = P.new(X) creates a new object of the same type as P, by invoking the SE3 constructor on the matrix
% X (4x4).
%
% P2 = P.new() as above but defines a null motion.
%
% Notes::
% - Serves as a dynamic constructor.
% - This method is polymorphic across all RTBPose derived classes, and
% allows easy creation of a new object of the same class as an existing
% one without needing to explicitly determine its type.
%
% See also SO3.new, SO2.new, SE2.new.
n = SE3(varargin{:});
end
function T = norm(obj)
%SE3.norm Normalize rotation submatrix (compatibility)
%
% P.norm() is an SE3 pose equivalent to P but the rotation
% matrix is normalized (guaranteed to be orthogonal).
%
% Notes::
% - Overrides the classic RTB function trnorm for an SE3 object.
%
% See also trnorm.
for k=1:length(obj)
T(k) = SE3( trnorm( double(obj(k))) );
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VANILLA RTB FUNCTION COMPATIBILITY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function T = trnorm(obj)
%SE3.trnorm Normalize rotation submatrix (compatibility)
%
% T = trnorm(P) is an SE3 object equivalent to P but
% normalized (rotation matrix guaranteed to be orthogonal).
%
% Notes::
% - Overrides the classic RTB function trnorm for an SE3 object.
%
% See also trnorm.
for k=1:length(obj)
T(k) = SE3( trnorm( double(obj(k))) );
end
end
function Vt = homtrans(P, V)
%SE3.homtrans Apply transformation to points (compatibility)
%
% homtrans(P, V) applies SE3 pose object P to the points stored columnwise in
% V (3xN) and returns transformed points (3xN).
%
% Notes::
% - P is an SE3 object defining the pose of {A} with respect to {B}.
% - The points are defined with respect to frame {A} and are transformed to be
% with respect to frame {B}.
% - Equivalent to P*V using overloaded SE3 operators.
%
% See also RTBPose.mtimes, HOMTRANS.
Vt = P*V;
end
end
methods (Static)
% Static factory methods for constructors from standard representations
function obj = Rx(varargin)
%SE3.Rx Construct SE3 from rotation about X axis
%
% P = SE3.Rx(THETA) is an SE3 object representing a rotation of THETA
% radians about the x-axis. If the THETA is a vector (1xN) then P will be
% a vector (1xN) of corresponding SE3 objects.
%
% P = SE3.Rx(THETA, 'deg') as above but THETA is in degrees.
%
% See also SE3.Ry, SE3.Rz, rotx.
obj = SE3( SO3.Rx(varargin{:}) );
end
function obj = Ry(varargin)
%SE3.Ry Construct SE3 from rotation about Y axis
%
% P = SE3.Ry(THETA) is an SE3 object representing a rotation of THETA
% radians about the y-axis. If the THETA is a vector (1xN) then P will be
% a vector (1xN) of corresponding SE3 objects.
%
% P = SE3.Ry(THETA, 'deg') as above but THETA is in degrees.
%
% See also SE3.Ry, SE3.Rz, rotx.
obj = SE3( SO3.Ry(varargin{:}) );
end
function obj = Rz(varargin)
%SE3.Rz Construct SE3 from rotation about Z axis
%
% P = SE3.Rz(THETA) is an SE3 object representing a rotation of THETA
% radians about the z-axis. If the THETA is a vector (1xN) then P will be
% a vector (1xN) of corresponding SE3 objects.
%
% P = SE3.Rz(THETA, 'deg') as above but THETA is in degrees.
%
% See also SE3.Ry, SE3.Rz, rotx.
obj = SE3( SO3.Rz(varargin{:}) );
end
function obj = oa(varargin)
%SE3.oa Construct SE3 from orientation and approach vectors
%
% P = SE3.oa(O, A) is an SE3 object for the specified
% orientation and approach vectors (3x1) formed from 3 vectors such that R
% = [N O A] and N = O x A, with zero translation.
%
% Notes::
% - The rotation submatrix is guaranteed to be orthonormal so long as O and A
% are not parallel.
% - The vectors O and A are parallel to the Y- and Z-axes of the coordinate
% frame.
%
% References::
% - Robot manipulators: mathematics, programming and control
% Richard Paul, MIT Press, 1981.
%
% See also RPY2R, EUL2R, OA2TR, SO3.oa.
obj = SE3( SO3.oa(varargin{:}) );
end
function obj = angvec(varargin)
%SE3.angvec Construct SE3 from angle and axis vector
%
% SE3.angvec(THETA, V) is an SE3 object equivalent to a rotation of THETA
% about the vector V and with zero translation.
%
% Notes::
% - If THETA == 0 then return identity matrix.
% - If THETA ~= 0 then V must have a finite length.
%
% See also SO3.angvec, eul2r, rpy2r, tr2angvec.
obj = SE3( SO3.angvec(varargin{:}) );
end
function obj = rpy(varargin)
%SE3.rpy Construct SE3 from roll-pitch-yaw angles
%
% P = SE3.rpy(ROLL, PITCH, YAW, OPTIONS) is an SE3 object equivalent to the
% specified roll, pitch, yaw angles angles with zero translation. These correspond to rotations
% about the Z, Y, X axes respectively. If ROLL, PITCH, YAW are column
% vectors (Nx1) then they are assumed to represent a trajectory then P is a
% vector (1xN) of SE3 objects.
%
% P = SE3.rpy(RPY, OPTIONS) as above but the roll, pitch, yaw angles angles
% angles are taken from consecutive columns of the passed matrix RPY =
% [ROLL, PITCH, YAW]. If RPY is a matrix (Nx3) then they are assumed to
% represent a trajectory and P is a vector (1xN) of SE3 objects.
%
% Options::
% 'deg' Compute angles in degrees (radians default)
% 'xyz' Rotations about X, Y, Z axes (for a robot gripper)
% 'yxz' Rotations about Y, X, Z axes (for a camera)
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p37-38.
%
% See also SO3.rpy, SE3.eul, TR2RPY, EUL2TR.
obj = SE3( SO3.rpy(varargin{:}) );
end
function obj = eul(varargin)
%SE3.eul Construct SE3 from Euler angles
%
% P = SO3.eul(PHI, THETA, PSI, OPTIONS) is an SE3 object equivalent to the
% specified Euler angles. These correspond to rotations about the Z, Y, Z
% axes respectively. If PHI, THETA, PSI are column vectors (Nx1) then they
% are assumed to represent a trajectory then P is a vector (1xN) of SE3 objects.
%
% P = SO3.eul(EUL, OPTIONS) as above but the Euler angles are taken from
% consecutive columns of the passed matrix EUL = [PHI THETA PSI]. If EUL
% is a matrix (Nx3) then they are assumed to represent a trajectory then P
% is a vector (1xN) of SE3 objects.
%
% Options::
% 'deg' Angles are specified in degrees (default radians)
%
% Note::
% - Translation is zero.
% - The vectors PHI, THETA, PSI must be of the same length.
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p36-37.
%
% See also SO3.eul, SE3.rpy, EUL2TR, RPY2TR, TR2EUL.
obj = SE3( SO3.eul(varargin{:}) );
end
function T = rand()
%SE3.rand Construct random SE3
%
% SE3.rand() is an SE3 object with a uniform random translation and a
% uniform random RPY/ZYX orientation. Random numbers are in the interval -1 to
% 1.
%
% See also RAND.
T = SE3( 2*rand(3,1)-1 ) * SE3(SO3.rand);
end
function obj = delta(d)
%SE3.delta Construct SE3 object from differential motion vector
%
% T = SE3.delta(D) is an SE3 pose object representing differential
% motion D (6x1).
%
% The vector D=(dx, dy, dz, dRx, dRy, dRz) represents infinitessimal translation
% and rotation, and is an approximation to the instantaneous spatial velocity
% multiplied by time step.
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p67.
%
% See also SE3.todelta, SE3.increment, TR2DELTA.
assert(isvec(d,6), 'SMTB:SE3:badarg', 'delta is a 6-vector');
obj = SE3( delta2tr(d));
end
% Static factory methods for constructors from exotic representations
function obj = exp(s)
%SE3.exp Construct SE3 from Lie algebra
%
% SE3.exp(SIGMA) is the SE3 rigid-body motion corresponding to the se(3)
% Lie algebra element SIGMA (4x4).
%
% SE3.exp(TW) as above but the Lie algebra is represented
% as a twist vector TW (6x1).
%
% SE3.exp(SIGMA, THETA) as above, but the motion is given by SIGMA*THETA
% where SIGMA is an se(3) element (4x4) whose rotation part has a unit norm.
%
% Notes::
% - TW is the non-zero elements of X.
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p42-43.
%
% See also trexp, skewa, Twist.
obj = SE3( trexp(s) );
end
% function m = ad(s)
% %m = [skew(s(1:3)) skew(s(4:6)); skew(s(4:6)) zeros(3,3)];
% m = [skew(s(4:6)) skew(s(1:3)) ; zeros(3,3) skew(s(4:6)) ];
% end
function T = convert(tr)
%SE3.check Convert to SE3
%
% Q = SE3.convert(X) is an SE3 object equivalent to X where X is either
% an SE3 object, or an SE(3) homogeneous transformation matrix (4x4).
if isa(tr, 'SE3')
T = tr;
elseif SE3.isa(tr)
T = SE3(tr);
else
error('expecting an SE3 or 4x4 matrix');
end
end
function h = isa(tr, rtest)
%SE3.ISA Test if matrix is SE(3)
%
% SE3.ISA(T) is true (1) if the argument T is of dimension 4x4 or 4x4xN, else
% false (0).
%
% SE3.ISA(T, 'valid') as above, but also checks the validity of the rotation
% sub-matrix.
%
% Notes::
% - Is a class method.
% - The first form is a fast, but incomplete, test for a transform in SE(3).
%
% See also SO3.isa, SE2.isa, SO2.isa.
d = size(tr);
if ndims(tr) >= 2
h = all(d(1:2) == [4 4]);
if h && nargin > 1 && ~isa(tr, 'sym')
h = SO3.isa( tr(1:3,1:3) ); % test the rotation submatrix
h = h && all(tr(4,:) == [0 0 0 1]); % test the bottom row
end
else
h = false;
end
end
end
end