forked from azf99/bank-statement-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
345 lines (261 loc) · 9.63 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
'''
Common functions for data transforation and analysis from the extracted transations data
'''
import re
import time
from datetime import datetime
import numpy as np
import pandas as pd
#from sklearn.feature_extraction.text import CountVectorizer
import re
#import matplotlib.pyplot as plt
#import seaborn as sns
from extract import *
#sns.set()
def conv_date(x):
'''
Function for correcting the date format
'''
x = datetime.strftime(datetime.strptime(x, "%d/%m/%Y"), "%m/%d/%Y")
return (x)
def balances(data, pdf_path):
'''
The function takes the original transaction table and creates a dummy table
consisting of blank transactions for calculations of average balances over different
periods of time
'''
df = data
for i in df.index:
df["Transaction Date"][i] = conv_date(df["Transaction Date"][i])
df["Transaction Date"] = pd.to_datetime(df["Transaction Date"])
test = pd.DataFrame(columns=["Transaction Date", "day", "month", "year", "Balance"], index=df.index)
for i in df.index:
test["Transaction Date"][i] = df["Transaction Date"][i]
test["day"][i] = df["Transaction Date"][i].day
test["month"][i] = df["Transaction Date"][i].month
test["year"][i] = df["Transaction Date"][i].year
test["Balance"][i] = df["Balance"][i]
# print(test.shape)
bal = pd.DataFrame(columns=["day", "month", "year", "week", "Balance"])
dels = []
for i in range(len(test.index) - 1):
if test["day"][i] != test["day"][i + 1]:
rng = pd.date_range(test["Transaction Date"][i], test["Transaction Date"][i + 1])
t = pd.DataFrame(columns=bal.columns, index=rng)
for j in rng:
t["day"][j] = j.day
t["month"][j] = j.month
t["year"][j] = j.year
t["week"][j] = j.week
t["Balance"][j] = test["Balance"][i]
bal = pd.concat([bal, t], axis=0)
bal = bal[~bal.index.duplicated(keep='first')]
print("[INFO] Exporting balances")
out_path = pdf_path[:pdf_path.find(".")] + "_balances.xlsx"
bal.to_excel(out_path, sheet_name="Daily Closing Balances")
return (bal)
def calculate_balances(data, pdf_path):
'''
Function takes the transactions and calculates average balances(daily, weekly, monthly, etc.)
and exports the final results to an excelsheet
'''
bal = balances(data, pdf_path)
# Weekly
weekly = bal.groupby("week").last().Balance
weekly_avg = sum(weekly) // len(weekly)
weekly_volume = bal.groupby("week").sum().Balance
weekly_volume_avg = sum(weekly_volume) // len(weekly_volume)
# Monthly
monthly = bal.groupby("month").last().Balance
monthly_avg = sum(monthly) // len(monthly)
monthly_volume = bal.groupby("month").sum().Balance
monthly_volume_avg = sum(monthly_volume) // len(monthly_volume)
# Daily
daily_avg = sum(bal.Balance) // len(bal)
dic = {"Avg Daily Closing Balance": daily_avg, "Average Weekly Closing Balance": weekly_avg,
"Avg Weekly Volume": weekly_volume_avg, "Avg Monthly Closing Balance": monthly_avg,
"Avg Monthly Volume": monthly_volume_avg}
avgs = pd.DataFrame(dic, index = [1])
out_path = pdf_path[:pdf_path.find(".")] + "_balances.xlsx"
with pd.ExcelWriter(out_path, mode="a") as writer:
avgs.to_excel(writer, sheet_name="Outputs")
inf = {"path_to_balances": out_path, "values": {}}
for i in avgs.columns:
inf["values"][i] = int(avgs[i][1])
return(inf)
def summary(data):
'''
A little summary of transactions
'''
# data = pd.read_excel("yes.xlsx")
#print("Total Transations=", data.shape[0])
d1 = data["Transaction Date"][0]
d2 = data["Transaction Date"][len(data) - 1]
d1 = datetime(int(d1[-4:]), int(d1[-7:-5]), int(d1[:2]))
d2 = datetime(int(d2[-4:]), int(d2[-7:-5]), int(d2[:2]))
#print("Length of statement: ", month_diff(d1, d2), "months")
return(data.shape[0], month_diff(d1, d2))
'''
monthly = data.groupby("Value Date").sum()
print("Average monthly debit = Rs.", np.mean(monthly.Debit))
print("Average monthly credit = Rs.", np.mean(monthly.Credit))
'''
def classify_trans(df):
'''
Takes the transactions and classifies them into categories
1. IMPS
2. ATM
3. FOOD
4. SHOPPING
5. CASH
and others
TODO: Make it less complicated and reusable
'''
# df = pd.read_excel("all_bank.xlsx")
t = df["Description"]
t = t.apply(lambda x: x.lower())
# Removing numbers and special characters
text = t.replace(to_replace="[0-9]", value="", regex=True).apply(
lambda x: x.replace("/", "").replace("\\", "").replace(":", "").replace("\n", " ").replace("-", " ")
.replace("/", " "))
# Removing extra spaces created due to the above step
for i in range(len(text)):
x = text[i].split()
for j in range(len(x)):
x[j] = x[j].strip()
text[i] = " ".join(x)
#### TODO: Rewriting the dictionary in a better implementation
labels = {"imps": "imps", "rrn": "imps", "loan": "loan", "emi": "emi", "amazon": "shopping", "flipkart": "shopping",
"mutualfund": "invest", "txn paytm": "trf", "restaurant": "food", "paytm": "trf",
"atd": "atm", "atm": "atm", "net txn": "nettxn", "cash": "cash", "funds trf": "trf", "neft": "neft",
"interest": "interest",
"metro": "travel", "swiggy": "food", "faasos": "food", "zomato": "food", "upi": "trf", "ola": "travel",
"refund": "refund",
"charge": "bank_charges", "pca": "trf"}
labs = []
# Labelling the transaction according to the dictionary defined
for i in text:
f = 0
for j in list(labels.keys()):
if j in i:
labs.append(labels[j])
f = 1
break
if f == 0:
labs.append("miscellaneous")
df["Label"] = pd.DataFrame(labs)
x = df.Description.apply(lambda x: re.findall(r'[\w\.-]+@[\w\.-]+', x))
df["Remark"] = pd.DataFrame(x)
return (df)
def money(df):
'''
Creates a column for depicting the Credit and Debit numerically
'''
money = []
type = []
for i in df.index:
if df["Debit"][i] > 0:
money.append(-df["Debit"][i])
type.append("Debit")
else:
money.append(df["Credit"][i])
type.append("Credit")
return (pd.concat([df, pd.DataFrame(money, columns=["flow"]), pd.DataFrame(type, columns=["type"])], axis=1))
def analyse(df):
labels = df["Label"].unique()
counts = df.groupby("Label").size()
sums = df.groupby("Label").sum()["flow"]
plt.figure(figsize=(16, 10))
plt.bar(counts.index, counts)
plt.show()
plt.figure(figsize=(16, 10))
plt.bar(sums.index, sums)
plt.show()
plt.figure(figsize=(16, 10))
plt.pie(counts, labels=counts.index)
plt.show()
plt.figure(figsize=(16, 10))
plt.pie(sums, labels=sums.index)
plt.show()
def cash_inflow(df):
print("[INFO] For cash Inflow...")
df = df[df.type == "Credit"]
# analyse(df)
labels = df["Label"].unique()
counts = df.groupby("Label").size().to_frame()
sums = df.groupby("Label").sum()["flow"].to_frame()
# print(counts)
# print(sums)
res = pd.merge(sums, counts, on="Label")
res.columns = ["amount", "count"]
return (res)
'''
plt.figure(figsize=(16, 10))
plt.bar(counts.index, counts)
plt.title("Cash Inflow count")
plt.show()
plt.figure(figsize=(16, 10))
plt.bar(sums.index, sums)
plt.title("Cash Inflow amount")
plt.show()
plt.figure(figsize=(16, 10))
plt.pie(counts, labels = counts.index)
plt.title("Cash Inflow count")
plt.show()
plt.figure(figsize=(16, 10))
plt.pie(sums, labels = sums.index)
plt.title("Cash Inflow amount")
plt.show()
'''
def cash_outflow(df):
print("[INFO] For cash outflow")
df = df[df.type == "Debit"]
# analyse(df)
labels = df["Label"].unique()
counts = df.groupby("Label").size().to_frame()
sums = df.groupby("Label").sum()["flow"]
sums = sums.apply(lambda x: abs(x)).to_frame()
res = pd.merge(sums, counts, on="Label")
res.columns = ["amount", "count"]
return (res)
# print(counts)
# print(sums)
'''
plt.figure(figsize=(16, 10))
plt.bar(counts.index, counts)
plt.title("Cash Outflow count")
plt.show()
plt.figure(figsize=(16, 10))
plt.bar(sums.index, sums)
plt.title("Cash Outflow amount")
plt.show()
plt.figure(figsize=(16, 10))
plt.pie(counts, labels = counts.index)
plt.title("Cash Outflow count")
plt.show()
plt.figure(figsize=(16, 10))
plt.pie(sums, labels = sums.index)
plt.title("Cash Outflow amount")
plt.show()
'''
def redundant_trans(processed_path, length):
try:
print("AT SALARY")
x = pd.read_excel(processed_path)
y = x[(x.type == "Credit") & (x.flow >= 20000) & (x.Label.isin(["cash", "imps"]) == False)]
text = y["Description"].replace(to_replace="[0-9]", value="", regex=True).apply(
lambda x: x.replace("/", "").replace("\\", "").replace(":", "").replace("\n", " ").replace("-", " ")
.replace("/", " "))
w = []
for i in text:
w.extend(list(set(i.split(" "))))
most = pd.Series(w).value_counts() <= length
most = most.index[0]
s = []
for i in y["Description"].index:
if most in y["Description"][i]:
s.append(y["Credit"][i])
avg = sum(s)/len(s)
return(avg)
except:
return("Salary not found!")