-
Notifications
You must be signed in to change notification settings - Fork 0
/
BeamBeamTracking.html
256 lines (238 loc) · 173 KB
/
BeamBeamTracking.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Beam-beam tracking (Section 9.7)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S8 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.S9 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Beam-beam tracking (Section 9.7)</span></h1><div class = 'S0'><span>Volker Ziemann, 211114, CC-BY-SA-4.0</span></div><div class = 'S0'><span style=' font-weight: bold;'>Important:</span><span> requires the Faddeeva package from </span><a href = "https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions"><span>https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions</span></a><span>.</span></div><div class = 'S0'><span>In this example we simulate a so-called </span><span style=' font-weight: bold;'>van-der-Meer scan</span><span>, where we move one beam transversely across the counter-propagating beam while they are colliding. The electro-magnetic forces cause the closed orbit of the two beams to slighly deform and couples the betatron oscillations of the two beams. We use the parameters of an early version of the B-factory in the PEP tunnel at SLAC where 9 GeV electrons collide with 3.1 GeV positrons.</span></div><div class = 'S0'><span>First we define a few quantities that we later need to post-process data. Note that we pass some quantities as </span><span style=' font-family: monospace;'>global</span><span> variables to functions.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span><span >;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./Faddeeva</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >Re Rp kapsig Ne Np egamma pgamma Relec</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >degree=pi/180;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Nfft=1024; tune=(0:Nfft/2-1)/Nfft; </span><span style="color: rgb(2, 128, 9);">% axis for fft plots</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >Relec=2.8179e-15; </span><span style="color: rgb(2, 128, 9);">% classical electron radius</span></span></div></div></div><div class = 'S5'><span>Now we define the beam parameters of the electron beam at the interaction point</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >egamma=9e9/511e3; </span><span style="color: rgb(2, 128, 9);">% 9 GeV</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Ne=3.883e10; </span><span style="color: rgb(2, 128, 9);">% particles per bunch</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >emitx=4e-8; betax=1; Qx=0.64; </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >emity=2e-9; betay=0.05; Qy=0.57;</span></span></div></div></div><div class = 'S5'><span>and those of the couter-propagating positron bunch.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >pgamma=3.1e9/511e3; </span><span style="color: rgb(2, 128, 9);">% 3.1 GeV</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Np=5.632e10; </span><span style="color: rgb(2, 128, 9);">% particles per bunch</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >pmitx=4e-8; pbetax=1; pQx=0.64; </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >pmity=2e-9; pbetay=0.05; pQy=0.57;</span></span></div></div></div><div class = 'S5'><span style=' font-family: monospace;'>Re </span><span>is the </span><span texencoding="4\times4" style="vertical-align:-5px"><img src="" width="34.5" height="18" /></span><span> transfer matrix for the electron beam for one turn in the storage ring and </span><span style=' font-family: monospace;'>esigxy</span><span> is a </span><span texencoding="2\times 2" style="vertical-align:-5px"><img src="" width="34.5" height="18" /></span><span>matrix with the horizontal and vertical beam sizes at the IP on the diagonal.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >Rx=[cos(2*pi*Qx),betax*sin(2*pi*Qx);-sin(2*pi*Qx)/betax,cos(2*pi*Qx)]; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Ry=[cos(2*pi*Qy),betay*sin(2*pi*Qy);-sin(2*pi*Qy)/betay,cos(2*pi*Qy)]; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Re=[Rx,zeros(2,2);zeros(2,2),Ry];</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >esigxy=[emitx*betax, 0; 0, emity*betay]; </span><span style="color: rgb(2, 128, 9);">% electron sigma_xy at IP</span></span></div></div></div><div class = 'S5'><span style=' font-family: monospace;'>Rp</span><span> and </span><span style=' font-family: monospace;'>psigxy</span><span> are the corresponding quantities for the counter-propagating positron beam.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >Rx=[cos(2*pi*pQx),pbetax*sin(2*pi*pQx);-sin(2*pi*pQx)/pbetax,cos(2*pi*pQx)]; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Ry=[cos(2*pi*pQy),pbetay*sin(2*pi*pQy);-sin(2*pi*pQy)/pbetay,cos(2*pi*pQy)]; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Rp=[Rx,zeros(2,2);zeros(2,2),Ry];</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >psigxy=[pmitx*pbetax, 0; 0, pmity*pbetay]; </span><span style="color: rgb(2, 128, 9);">% positron sigma_xy at IP</span></span></div></div></div><div class = 'S5'><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: normal; font-weight: normal; color: rgb(0, 0, 0);">Σ</span><span> or </span><span style=' font-family: monospace;'>kapsig</span><span> is the sum of the transverse covariance matrices from Equation 9.20.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >kapsig=1e12*(esigxy+psigxy); </span><span style="color: rgb(2, 128, 9);">% KapSigma_xy at IP, converted to micron</span></span></div></div></div><div class = 'S0'><span>Now we are ready to horizontally scan the beams across each other in a</span><span style=' font-weight: bold;'> horizontal van-der-Meer scan</span><span>. Normally this is accomplished by small dipole magnets or electro-static separators. After allocating space for a few quantities and defining the bump settings...</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >pos=zeros(Nfft,1); </span><span style="color: rgb(2, 128, 9);">% array for positions for FFT</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >y=zeros(8,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >bump=-1000:50:1000; </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >data=zeros(length(bump),6);</span></span></div></div></div><div class = 'S5'><span>...we a re ready to scan. For each bump setting, we first find the distorted closed orbit with the function </span><span style=' font-family: monospace;'>fitco2()</span><span>, which is defined below in the Appendix, and store the values for displaying them later. Then we track the two beams with </span><span style=' font-family: monospace;'>trak() </span><span>and store the horizontal position of beam 1 (the electrons) in the array </span><span style=' font-family: monospace;'>pos()</span><span>. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:length(bump)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y=fitco2(y,bump(k),0); </span><span style="color: rgb(2, 128, 9);">% finds closed orbit with beambeam kick</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(k,1:4)=[y(1),y(2),y(5),y(6)]; </span><span style="color: rgb(2, 128, 9);">% store orbits for later display</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y(1)=y(1)+10; </span><span style="color: rgb(2, 128, 9);">% excite a betatron oscillation with 10 micron amplitude</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">for </span><span >m=1:Nfft </span><span style="color: rgb(2, 128, 9);">% iterate to get tunes from FFT</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y=trak(y,bump(k),0); pos(m)=y(1);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>From the stored position we determine the tunes of the coupled system by Fourier-transforming</span><span style=' font-family: monospace;'> pos()</span><span> with </span><span style=' font-family: monospace;'>fft()</span><span> and finding the peaks, which we store in the array </span><span style=' font-family: monospace;'>data</span><span> for later display.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > [peaks,locs]=findpeaks(2*abs(fft(pos))/Nfft,</span><span style="color: rgb(170, 4, 249);">'MinPeakHeight'</span><span >,2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(k,5)=(locs(1)-1)/Nfft; data(k,6)=(locs(2)-1)/Nfft;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>Once the whole range of bump settings is done, we plot the data against the bump amplitude. The upper plot shows the deflection angle of the electron and positron bunches. Note the opposite sign and the slightly different magnitudes, which is caused by the different number of particles in the bunches and the different energies of the counter-propagating bunches.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >subplot(2,1,1); plot(bump,data(:,2),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,bump,data(:,4),</span><span style="color: rgb(170, 4, 249);">'r-.'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'Horizontal bump amplitude [\mum]'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ylabel(</span><span style="color: rgb(170, 4, 249);">'Deflection angle [\murad]'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >legend(</span><span style="color: rgb(170, 4, 249);">'Electrons'</span><span >,</span><span style="color: rgb(170, 4, 249);">'Positrons'</span><span >)</span></span></div></div></div><div class = 'S5'><span>The lower plot shows the tunes detrmined by the call to fft(). We note that for large bunch offsets the tunes are almost equal, ebcause the bunches miss each other and do not couple. But once they are close, the beam-beam interaction couples the tunes and we see that one mode stay at the unperturbed values, while the other deviates significantly. The maximum split of the two modes occurs when the beams are colliding head-on, which is used in colliders to determine the best position of the colliding beams.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >subplot(2,1,2); plot(bump,data(:,5),</span><span style="color: rgb(170, 4, 249);">'k+'</span><span >,bump,data(:,6),</span><span style="color: rgb(170, 4, 249);">'k+'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'Horizontal bump amplitude [\mum]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'Tune Q_x'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span >ylim([0.3,0.4]); </span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="F47F482C" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1356px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_6" widgetid="uniqName_333_6" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_8" widgetid="uniqName_333_8" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><div class = 'S0'><span>A </span><span style=' font-weight: bold;'>vertical van-der-Meer</span><span> scan works in much the same way as the horizontal one. We first allocate variables and define the bump amplitude.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >figure</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >y=zeros(8,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >bump=-100:5:100;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >data=zeros(length(bump),4);</span></span></div></div></div><div class = 'S5'><span>An then loop over the different bump settings. At each setting we first determine the closed orbit with fitco2(), store the values and follow a slightly excited bunch for Nfft turn, while storing the vertical position.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:length(bump)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y=fitco2(y,0,bump(k)); </span><span style="color: rgb(2, 128, 9);">% finds closed orbit with beambeam kick</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(k,1:4)=[y(3),y(4),y(7),y(8)]; </span><span style="color: rgb(2, 128, 9);">% store vertical orbits</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y(3)=y(3)+10; </span><span style="color: rgb(2, 128, 9);">% excite a vertical betatron oscillation</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">for </span><span >m=1:Nfft </span><span style="color: rgb(2, 128, 9);">% iterate to get tunes from FFT</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y=trak(y,0,bump(k)); pos(m)=y(3);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>As before, we the determine the tunes from the FFT, but have to take care of aliasing, because the vertical tunes are above the half integer.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > [peaks,locs]=findpeaks(2*abs(fft(pos))/Nfft,</span><span style="color: rgb(170, 4, 249);">'MinPeakHeight'</span><span >,0.5);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > Q1=(locs(1)-1)/Nfft; </span><span style="color: rgb(14, 0, 255);">if </span><span >Q1>0.5 Q1=1-Q1; </span><span style="color: rgb(14, 0, 255);">end</span><span > </span><span style="color: rgb(2, 128, 9);">% avoid aliasing</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > Q2=(locs(2)-1)/Nfft; </span><span style="color: rgb(14, 0, 255);">if </span><span >Q2>0.5 Q2=1-Q2; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(k,5)=Q1; data(k,6)=Q2;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>And finally, we plot the deflection angle at the interaction point in the upper plot and the tunes in the lower plot.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >subplot(2,1,1); plot(bump,data(:,2),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,bump,data(:,4),</span><span style="color: rgb(170, 4, 249);">'r-.'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'Vertical bump amplitude [\mum]'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ylabel(</span><span style="color: rgb(170, 4, 249);">'Deflection angle [\murad]'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >legend(</span><span style="color: rgb(170, 4, 249);">'Electrons'</span><span >,</span><span style="color: rgb(170, 4, 249);">'Positrons'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(2,1,2); plot(bump,data(:,5),</span><span style="color: rgb(170, 4, 249);">'k+'</span><span >,bump,data(:,6),</span><span style="color: rgb(170, 4, 249);">'k+'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'Verical bump amplitude [\mum]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'Tune Q_y'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span >ylim([0.37,0.45]); </span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="C1049A9D" data-scroll-top="null" data-scroll-left="null" data-testid="output_1" style="width: 1356px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_9" widgetid="uniqName_333_9" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_11" widgetid="uniqName_333_11" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><h2 class = 'S9'><span>Appendix</span></h2><div class = 'S0'><span>The function</span><span style=' font-family: monospace;'> fitco2()</span><span> determines the closed orbit distortion from the combined effect of the bump and the beam-beam deflections, where the latter depend non-linearly on the positions, which makes some iterations necessary. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >y=fitco2(y,xbump,ybump)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >Re Rp kapsig Ne Np egamma pgamma Relec</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >RSe=inv(eye(4)-Re)*Re;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >RSp=inv(eye(4)-Rp)*Rp;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ic=20; </span><span style="color: rgb(2, 128, 9);">% iteration counter</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">while </span><span >ic>0 </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > ic=ic-1;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xsep=y(1)-y(5)+xbump; </span><span style="color: rgb(2, 128, 9);">% separation between bunch centers</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > ysep=y(3)-y(7)+ybump;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > q=F0(xsep,ysep,kapsig); </span><span style="color: rgb(2, 128, 9);">% the beam beam kick</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xk=imag(q); yk=real(q); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > exdef=-2e12*Relec*Np*xk/egamma; </span><span style="color: rgb(2, 128, 9);">% electron deflection angle</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > eydef=-2e12*Relec*Np*yk/egamma; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > pxdef=2e12*Relec*Ne*xk/pgamma; </span><span style="color: rgb(2, 128, 9);">% positron deflection angles</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > pydef=2e12*Relec*Ne*yk/pgamma;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y(1:4)=RSe*[0;exdef;0;eydef];</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > y(5:8)=RSp*[0;pxdef;0;pydef];</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>The function trak() implements one turn of the combined system of the two counter-propagating beams including the bumps and the beam-beam interactions. It just receives the </span><span texencoding="2\times 4" style="vertical-align:-5px"><img src="" width="34.5" height="18" /></span><span> input coordinates </span><span texencoding="x,x',y,y'" style="vertical-align:-5px"><img src="" width="58" height="18" /></span><span> for each beam and returns those positions after one turn. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >y=trak(y,xbump,ybump)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >Re Rp kapsig Ne Np egamma pgamma Relec</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xsep=y(1)-y(5)+xbump; </span><span style="color: rgb(2, 128, 9);">% separation between bunch centers</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ysep=y(3)-y(7)+ybump;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >q=F0(xsep,ysep,kapsig); </span><span style="color: rgb(2, 128, 9);">% the beam beam kick</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xk=imag(q); yk=real(q); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >exdef=-2e12*Relec*Np*xk/egamma; </span><span style="color: rgb(2, 128, 9);">% electron deflection angle</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >eydef=-2e12*Relec*Np*yk/egamma; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >pxdef=2e12*Relec*Ne*xk/pgamma; </span><span style="color: rgb(2, 128, 9);">% positron deflection angles</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >pydef=2e12*Relec*Ne*yk/pgamma;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >y(2)=y(2)+exdef; y(4)=y(4)+eydef; </span><span style="color: rgb(2, 128, 9);">% electron deflection angle</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >y(6)=y(6)+pxdef; y(8)=y(8)+pydef; </span><span style="color: rgb(2, 128, 9);">% Positron deflection angle</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >y(1:4)=Re*y(1:4); </span><span style="color: rgb(2, 128, 9);">% electron transport through the ring</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >y(5:8)=Rp*y(5:8); </span><span style="color: rgb(2, 128, 9);">% positron transport through the ring</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>The beam-beam kick depends on the function </span><span style=' font-family: monospace;'>F0()</span><span>, defined in Equation 9.28. It uses the complex error function </span><span texencoding="w(z)" style="vertical-align:-5px"><img src="" width="30.5" height="19" /></span><span> which is provided by the Faddeeva package from matlab central (</span><a href = "https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions"><span>https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions</span></a><span>).</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=F0(x,y,sig)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >r=1/sqrt(2*(sig(1,1)-sig(2,2)+2*i*sig(1,2)));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >detsig=sig(1,1)*sig(2,2)-sig(1,2)^2;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >abs(r) > 1e8 </span><span style="color: rgb(2, 128, 9);">% round beam</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > out=i*(x-i*y).*(1-exp(-0.5*(x.^2+y.^2)./sig(1,1)))./(x.^2+y.^2+1e-10);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">return</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >a1=r;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >a2=i*r;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >b1=r*(sig(2,2)-i*sig(1,2))/sqrt(detsig);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >b2=i*r*(sig(1,1)+i*sig(1,2))/sqrt(detsig);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >g=0.5*(sig(2,2)*x.^2-2*sig(1,2).*x.*y+sig(1,1)*y.^2)/detsig;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >z1=a1*x+a2*y;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >z2=b1*x+b2*y;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >zz1=conj(z1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >zz2=conj(z2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >q1=(imag(z2)>=0); </span><span style="color: rgb(2, 128, 9);">% use one or the other form , depending on sign of</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >q2=1-q1; </span><span style="color: rgb(2, 128, 9);">% imaginary part of argument of w(z)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >out1=Faddeeva_w(z1)-exp(-g).*Faddeeva_w(z2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >out1(isnan(out1))=0; out1(isinf(out1))=0;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >out2=conj(Faddeeva_w(zz1)-exp(-g).*Faddeeva_w(zz2));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >out2(isnan(out2))=0; out2(isinf(out2))=0;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >out=sqrt(pi)*r*(q1.*out1-q2.*out2);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Beam-beam tracking (Section 9.7)
% Volker Ziemann, 211114, CC-BY-SA-4.0
%
% *Important:* requires the Faddeeva package from <https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions
% https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions>.
%
% In this example we simulate a so-called *van-der-Meer scan*, where we move
% one beam transversely across the counter-propagating beam while they are colliding.
% The electro-magnetic forces cause the closed orbit of the two beams to slighly
% deform and couples the betatron oscillations of the two beams. We use the parameters
% of an early version of the B-factory in the PEP tunnel at SLAC where 9 GeV electrons
% collide with 3.1 GeV positrons.
%
% First we define a few quantities that we later need to post-process data.
% Note that we pass some quantities as |global| variables to functions.
clear all; close all;
addpath ./Faddeeva
global Re Rp kapsig Ne Np egamma pgamma Relec
degree=pi/180;
Nfft=1024; tune=(0:Nfft/2-1)/Nfft; % axis for fft plots
Relec=2.8179e-15; % classical electron radius
%%
% Now we define the beam parameters of the electron beam at the interaction
% point
egamma=9e9/511e3; % 9 GeV
Ne=3.883e10; % particles per bunch
emitx=4e-8; betax=1; Qx=0.64;
emity=2e-9; betay=0.05; Qy=0.57;
%%
% and those of the couter-propagating positron bunch.
pgamma=3.1e9/511e3; % 3.1 GeV
Np=5.632e10; % particles per bunch
pmitx=4e-8; pbetax=1; pQx=0.64;
pmity=2e-9; pbetay=0.05; pQy=0.57;
%%
% |Re| is the $4\times4$ transfer matrix for the electron beam for one turn
% in the storage ring and |esigxy| is a $2\times 2$matrix with the horizontal
% and vertical beam sizes at the IP on the diagonal.
Rx=[cos(2*pi*Qx),betax*sin(2*pi*Qx);-sin(2*pi*Qx)/betax,cos(2*pi*Qx)];
Ry=[cos(2*pi*Qy),betay*sin(2*pi*Qy);-sin(2*pi*Qy)/betay,cos(2*pi*Qy)];
Re=[Rx,zeros(2,2);zeros(2,2),Ry];
esigxy=[emitx*betax, 0; 0, emity*betay]; % electron sigma_xy at IP
%%
% |Rp| and |psigxy| are the corresponding quantities for the counter-propagating
% positron beam.
Rx=[cos(2*pi*pQx),pbetax*sin(2*pi*pQx);-sin(2*pi*pQx)/pbetax,cos(2*pi*pQx)];
Ry=[cos(2*pi*pQy),pbetay*sin(2*pi*pQy);-sin(2*pi*pQy)/pbetay,cos(2*pi*pQy)];
Rp=[Rx,zeros(2,2);zeros(2,2),Ry];
psigxy=[pmitx*pbetax, 0; 0, pmity*pbetay]; % positron sigma_xy at IP
%%
% $\Sigma$ or |kapsig| is the sum of the transverse covariance matrices from
% Equation 9.20.
kapsig=1e12*(esigxy+psigxy); % KapSigma_xy at IP, converted to micron
%%
% Now we are ready to horizontally scan the beams across each other in a *horizontal
% van-der-Meer scan*. Normally this is accomplished by small dipole magnets or
% electro-static separators. After allocating space for a few quantities and
% defining the bump settings...
pos=zeros(Nfft,1); % array for positions for FFT
y=zeros(8,1);
bump=-1000:50:1000;
data=zeros(length(bump),6);
%%
% ...we a re ready to scan. For each bump setting, we first find the distorted
% closed orbit with the function |fitco2()|, which is defined below in the Appendix,
% and store the values for displaying them later. Then we track the two beams
% with |trak()| and store the horizontal position of beam 1 (the electrons) in
% the array |pos()|.
for k=1:length(bump)
y=fitco2(y,bump(k),0); % finds closed orbit with beambeam kick
data(k,1:4)=[y(1),y(2),y(5),y(6)]; % store orbits for later display
y(1)=y(1)+10; % excite a betatron oscillation with 10 micron amplitude
for m=1:Nfft % iterate to get tunes from FFT
y=trak(y,bump(k),0); pos(m)=y(1);
end
%%
% From the stored position we determine the tunes of the coupled system by Fourier-transforming
% |pos()| with |fft()| and finding the peaks, which we store in the array |data|
% for later display.
[peaks,locs]=findpeaks(2*abs(fft(pos))/Nfft,'MinPeakHeight',2);
data(k,5)=(locs(1)-1)/Nfft; data(k,6)=(locs(2)-1)/Nfft;
end
%%
% Once the whole range of bump settings is done, we plot the data against the
% bump amplitude. The upper plot shows the deflection angle of the electron and
% positron bunches. Note the opposite sign and the slightly different magnitudes,
% which is caused by the different number of particles in the bunches and the
% different energies of the counter-propagating bunches.
subplot(2,1,1); plot(bump,data(:,2),'k',bump,data(:,4),'r-.');
xlabel('Horizontal bump amplitude [\mum]')
ylabel('Deflection angle [\murad]')
legend('Electrons','Positrons')
%%
% The lower plot shows the tunes detrmined by the call to fft(). We note that
% for large bunch offsets the tunes are almost equal, ebcause the bunches miss
% each other and do not couple. But once they are close, the beam-beam interaction
% couples the tunes and we see that one mode stay at the unperturbed values, while
% the other deviates significantly. The maximum split of the two modes occurs
% when the beams are colliding head-on, which is used in colliders to determine
% the best position of the colliding beams.
subplot(2,1,2); plot(bump,data(:,5),'k+',bump,data(:,6),'k+');
xlabel('Horizontal bump amplitude [\mum]'); ylabel('Tune Q_x')
ylim([0.3,0.4]);
%%
% A *vertical van-der-Meer* scan works in much the same way as the horizontal
% one. We first allocate variables and define the bump amplitude.
figure
y=zeros(8,1);
bump=-100:5:100;
data=zeros(length(bump),4);
%%
% An then loop over the different bump settings. At each setting we first determine
% the closed orbit with fitco2(), store the values and follow a slightly excited
% bunch for Nfft turn, while storing the vertical position.
for k=1:length(bump)
y=fitco2(y,0,bump(k)); % finds closed orbit with beambeam kick
data(k,1:4)=[y(3),y(4),y(7),y(8)]; % store vertical orbits
y(3)=y(3)+10; % excite a vertical betatron oscillation
for m=1:Nfft % iterate to get tunes from FFT
y=trak(y,0,bump(k)); pos(m)=y(3);
end
%%
% As before, we the determine the tunes from the FFT, but have to take care
% of aliasing, because the vertical tunes are above the half integer.
[peaks,locs]=findpeaks(2*abs(fft(pos))/Nfft,'MinPeakHeight',0.5);
Q1=(locs(1)-1)/Nfft; if Q1>0.5 Q1=1-Q1; end % avoid aliasing
Q2=(locs(2)-1)/Nfft; if Q2>0.5 Q2=1-Q2; end
data(k,5)=Q1; data(k,6)=Q2;
end
%%
% And finally, we plot the deflection angle at the interaction point in the
% upper plot and the tunes in the lower plot.
subplot(2,1,1); plot(bump,data(:,2),'k',bump,data(:,4),'r-.');
xlabel('Vertical bump amplitude [\mum]')
ylabel('Deflection angle [\murad]')
legend('Electrons','Positrons')
subplot(2,1,2); plot(bump,data(:,5),'k+',bump,data(:,6),'k+');
xlabel('Verical bump amplitude [\mum]'); ylabel('Tune Q_y')
ylim([0.37,0.45]);
%% Appendix
% The function |fitco2()| determines the closed orbit distortion from the combined
% effect of the bump and the beam-beam deflections, where the latter depend non-linearly
% on the positions, which makes some iterations necessary.
function y=fitco2(y,xbump,ybump)
global Re Rp kapsig Ne Np egamma pgamma Relec
RSe=inv(eye(4)-Re)*Re;
RSp=inv(eye(4)-Rp)*Rp;
ic=20; % iteration counter
while ic>0
ic=ic-1;
xsep=y(1)-y(5)+xbump; % separation between bunch centers
ysep=y(3)-y(7)+ybump;
q=F0(xsep,ysep,kapsig); % the beam beam kick
xk=imag(q); yk=real(q);
exdef=-2e12*Relec*Np*xk/egamma; % electron deflection angle
eydef=-2e12*Relec*Np*yk/egamma;
pxdef=2e12*Relec*Ne*xk/pgamma; % positron deflection angles
pydef=2e12*Relec*Ne*yk/pgamma;
y(1:4)=RSe*[0;exdef;0;eydef];
y(5:8)=RSp*[0;pxdef;0;pydef];
end
end
%%
% The function trak() implements one turn of the combined system of the two
% counter-propagating beams including the bumps and the beam-beam interactions.
% It just receives the $2\times 4$ input coordinates $x,x',y,y'$ for each beam
% and returns those positions after one turn.
function y=trak(y,xbump,ybump)
global Re Rp kapsig Ne Np egamma pgamma Relec
xsep=y(1)-y(5)+xbump; % separation between bunch centers
ysep=y(3)-y(7)+ybump;
q=F0(xsep,ysep,kapsig); % the beam beam kick
xk=imag(q); yk=real(q);
exdef=-2e12*Relec*Np*xk/egamma; % electron deflection angle
eydef=-2e12*Relec*Np*yk/egamma;
pxdef=2e12*Relec*Ne*xk/pgamma; % positron deflection angles
pydef=2e12*Relec*Ne*yk/pgamma;
y(2)=y(2)+exdef; y(4)=y(4)+eydef; % electron deflection angle
y(6)=y(6)+pxdef; y(8)=y(8)+pydef; % Positron deflection angle
y(1:4)=Re*y(1:4); % electron transport through the ring
y(5:8)=Rp*y(5:8); % positron transport through the ring
end
%%
% The beam-beam kick depends on the function |F0()|, defined in Equation 9.28.
% It uses the complex error function $w(z)$ which is provided by the Faddeeva
% package from matlab central (<https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions
% https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions>).
function out=F0(x,y,sig)
r=1/sqrt(2*(sig(1,1)-sig(2,2)+2*i*sig(1,2)));
detsig=sig(1,1)*sig(2,2)-sig(1,2)^2;
if abs(r) > 1e8 % round beam
out=i*(x-i*y).*(1-exp(-0.5*(x.^2+y.^2)./sig(1,1)))./(x.^2+y.^2+1e-10);
return
end
a1=r;
a2=i*r;
b1=r*(sig(2,2)-i*sig(1,2))/sqrt(detsig);
b2=i*r*(sig(1,1)+i*sig(1,2))/sqrt(detsig);
g=0.5*(sig(2,2)*x.^2-2*sig(1,2).*x.*y+sig(1,1)*y.^2)/detsig;
z1=a1*x+a2*y;
z2=b1*x+b2*y;
zz1=conj(z1);
zz2=conj(z2);
q1=(imag(z2)>=0); % use one or the other form , depending on sign of
q2=1-q1; % imaginary part of argument of w(z)
out1=Faddeeva_w(z1)-exp(-g).*Faddeeva_w(z2);
out1(isnan(out1))=0; out1(isinf(out1))=0;
out2=conj(Faddeeva_w(zz1)-exp(-g).*Faddeeva_w(zz2));
out2(isnan(out2))=0; out2(isinf(out2))=0;
out=sqrt(pi)*r*(q1.*out1-q2.*out2);
end
##### SOURCE END #####
-->
</div></body></html>