-
Notifications
You must be signed in to change notification settings - Fork 0
/
BeamOptics2D.html
435 lines (406 loc) · 344 KB
/
BeamOptics2D.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>2D beam optics (Section 3.3.3, 3.3.5, 3.6.1, and 3.6.2)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.S2 { margin: 10px 0px 20px; padding-left: 0px; font-family: Helvetica, Arial, sans-serif; font-size: 14px; }
.S3 { margin-left: 56px; line-height: 21px; min-height: 0px; text-align: left; white-space: pre-wrap; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.variableValue { width: 100% !important; }
.embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement { min-height: 18px; box-sizing: border-box;}
.embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement { position: relative;}
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue { white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
.embeddedOutputsMatrixElement.inlineElement {}
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper { display: none;}
.embeddedOutputsMatrixElement.inlineElement .veTable .body { padding-top: 0 !important; max-height: 100px;}
.inlineElement .matrixElement { max-height: 300px;}
.embeddedOutputsMatrixElement.rightPaneElement {}
.rightPaneElement .matrixElement,.rtcDataTipElement .matrixElement { overflow: hidden; padding-left: 9px;}
.rightPaneElement .matrixElement { margin-bottom: -1px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.eoOutputWrapper .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer { white-space: nowrap; margin-bottom: 3px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis.hide,.eoOutputWrapper .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide { display: none;}
.embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .verticalEllipsis, .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .horizontalEllipsis { display:none;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis { margin-bottom: -3px;}
.eoOutputWrapper .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer { cursor: default !important;}
.embeddedOutputsVariableElement { white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
.variableElement {}
.embeddedOutputsVariableElement.inlineElement {}
.inlineElement .variableElement {}
.embeddedOutputsVariableElement.rightPaneElement { min-height: 16px;}
.rightPaneElement .variableElement { padding-top: 2px; padding-left: 9px;}
.variableNameElement { margin-bottom: 3px; display: inline-block;}
/* * Ellipses as base64 for HTML export. */.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis { display: inline-block; margin-top: 3px; /* base64 encoded version of images-liveeditor/HEllipsis.png */ width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");}
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis { margin-left: 35px; /* base64 encoded version of images-liveeditor/VEllipsis.png */ width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S10 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S11 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S12 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }
.S13 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S14 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S15 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S16 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>2D beam optics (Section 3.3.3, 3.3.5, 3.6.1, and 3.6.2)</span></h1><div class = 'S0'><span>Volker Ziemann, 211106, CC-BY-SA-4.0</span></div><div class = 'S0'><span>In accelerators the elements, such as a magnet or the beam pipe between the magnets, follow one another and we represent them as lines in an array that describes this sequence. We describe drift space with a code=1 in the first column and thin quadrupoles by code=2. The second column contains the number the line is repeated internally, the third column displays the lenth of the element and the fourth column the strength. For a thin quadrupole the latter is specified as its focal length F. Summarizing</span></div><ul class = 'S2'><li class = 'S3'><span>First column: code, drift=1, quad=2</span></li><li class = 'S3'><span>Second column: repeat code for the element</span></li><li class = 'S3'><span>Third column: length of one segment</span></li><li class = 'S3'><span>Fourth column: strength of one segment, focal length for a thin quadrupole.</span></li></ul><div class = 'S0'><span>A simple FODO cell that starts in the middle of the drift space before the defocusing quadrupole is thus defined in the following array, named </span><span style=' font-family: monospace;'>fodo,</span><span> where the focal length is defined as</span><span style=' font-family: monospace;'> F=2.1. </span><span>Just below the defionition of fodo we define the</span><span style=' font-family: monospace;'> beamline </span><span>as 20 copies of</span><span style=' font-family: monospace;'> fodo</span><span> stacked on top of each other.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >beamline sigma0 </span><span style="color: rgb(2, 128, 9);">% needed for some functions.</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >F=2.1; </span><span style="color: rgb(2, 128, 9);">% focal length of the quadrupoles</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >fodo=[ 1, 5, 0.2, 0; </span><span style="color: rgb(2, 128, 9);">% 5* D(L/10)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, -F; </span><span style="color: rgb(2, 128, 9);">% QD</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span><span style="color: rgb(2, 128, 9);">% 10* D(L/10) </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, F; </span><span style="color: rgb(2, 128, 9);">% QF/2</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span > 1, 5, 0.2, 0] </span><span style="color: rgb(2, 128, 9);">% 5* D(L/10) </span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="F5870DE7" data-scroll-top="null" data-scroll-left="null" data-width="1326" data-testid="output_0" style="width: 1356px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1326px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">fodo = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">5×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":"4","totalRows":"5","charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 290px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 1.0000 5.0000 0.2000 0
2.0000 1.0000 0 -2.1000
1.0000 10.0000 0.2000 0
2.0000 1.0000 0 2.1000
1.0000 5.0000 0.2000 0
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >beamline=repmat(fodo,20,1) </span><span style="color: rgb(2, 128, 9);">% name must be 'beamline' </span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="449D2C66" data-scroll-top="null" data-scroll-left="null" data-width="1326" data-testid="output_1" style="width: 1356px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1326px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">beamline = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">100×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":"4","totalRows":"100","charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 290px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 1.0000 5.0000 0.2000 0
2.0000 1.0000 0 -2.1000
1.0000 10.0000 0.2000 0
2.0000 1.0000 0 2.1000
1.0000 5.0000 0.2000 0
1.0000 5.0000 0.2000 0
2.0000 1.0000 0 -2.1000
1.0000 10.0000 0.2000 0
2.0000 1.0000 0 2.1000
1.0000 5.0000 0.2000 0
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div></div><div class = 'S0'><span>Now calculate all the transfer matrices with the function </span><span style=' font-family: monospace;'>calcmat()</span><span> that is defined in the appendix</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div></div><div class = 'S10'><span>Then we allocate memory to store the positions after each segment that we want to display later</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >data=zeros(1,nmat); </span><span style="color: rgb(2, 128, 9);">% allocate memory</span></span></div></div></div><div class = 'S10'><span>and define the input state x0, which contains the starting position and angle</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >x0=[0.001;0]; </span><span style="color: rgb(2, 128, 9);">% 1 mm offset at start</span></span></div></div></div><div class = 'S10'><span>before mapping the input x0 to the state vector x at the end of each segment along the beam line</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:nmat </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > x=Racc(:,:,k)*x0;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > data(k)=x(1); </span><span style="color: rgb(2, 128, 9);">% store the position</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S10'><span>and annotate the axes</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >plot(spos,1e3*data,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); </span><span style="color: rgb(2, 128, 9);">% 1e3 to convert to mm</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'s [m]'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >ylabel(</span><span style="color: rgb(170, 4, 249);">' x [mm]'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Trajectory'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >xlim([spos(1),spos(end)])</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="1C50D4D0" data-scroll-top="null" data-scroll-left="null" data-testid="output_2" style="width: 1356px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><h2 class = 'S12'><span>Beta functions</span></h2><div class = 'S0'><span>Now we are ready to calculate the beta functions along the beamline. Let's first calculate the transfer matrices for a single fodo cell.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline=fodo; </span><span style="color: rgb(2, 128, 9);">% just a single FODO cell</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span >Rend=Racc(:,:,end); </span><span style="color: rgb(2, 128, 9);">% the TM from start to end</span></span></div></div></div><div class = 'S10'><span>and the periodic Twiss parameters </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">α</span><span>, </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">β</span><span>, and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">γ</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S13'><span style="white-space: pre"><span >[Qtune,alpha0,beta0,gamma0]=R2beta(Rend)</span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>Qtune = 0.1580</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>alpha0 = 1.1372</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>beta0 = 4.2348</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>gamma0 = 0.5415</div></div></div></div><div class = 'S10'><span>where we observe that Qtune is 0.1580. Change the focal length </span><span style=' font-family: monospace;'>F</span><span> way up in this script to a different value and observe how </span><span style=' font-family: monospace;'>Qtune </span><span>changes. </span></div><div class = 'S0'><span>We now use the Twiss parameters to construct the </span><span style=' font-weight: bold;'>initial </span><span>beam matrix sigma0</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S13'><span style="white-space: pre"><span >sigma0=[beta0,-alpha0;-alpha0,gamma0]</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="A877AECB" data-scroll-top="null" data-scroll-left="null" data-width="1326" data-testid="output_7" style="width: 1356px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1326px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">sigma0 = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">2×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":"2","totalRows":"2","charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 146px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 4.2348 -1.1372
-1.1372 0.5415
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div></div><div class = 'S10'><span>and map this through one FODO cell</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >data=zeros(1,nmat); </span><span style="color: rgb(2, 128, 9);">% allocate memory</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:nmat</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)';</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > data(k)=sigma(1,1); </span><span style="color: rgb(2, 128, 9);">% that's the beta</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S10'><span>and plot the beta function through one FODO cell</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >plot(spos,data,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'s [m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\beta [m]'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Beta function in one FODO cell'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="2FAF2C2D" data-scroll-top="null" data-scroll-left="null" data-testid="output_8" style="width: 1356px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S10'><span>We observe an oscillation with aminimum at the location of the defocusing quadrupole at s=1 m and a maximum in the focusing quadrupole at s=3 m.</span></div><h2 class = 'S12'><span>Betafunction through ten FODO cells</span></h2><div class = 'S0'><span> Mapping the beta function through 10 FODO cells makes it necessary to increas the length of the</span><span style=' font-family: monospace;'> beamline</span><span> and update all transfer matrices</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline=repmat(fodo,10,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div></div><div class = 'S10'><span>We do not need to re-calculate sigma0, because it is periodic and we can therefore use the one determined from a single cell. Let's propagate the beta function </span><span style=' font-family: monospace;'>sigma0</span><span> through the 10 FODO cells and plot the result</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >data=zeros(1,nmat); </span><span style="color: rgb(2, 128, 9);">% allocate memory</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:nmat</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)';</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > data(k)=sigma(1,1); </span><span style="color: rgb(2, 128, 9);">% that's the beta</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >plot(spos,data,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'s [m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\beta [m]'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Beta function in ten FODO cells'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="78FDCB42" data-scroll-top="null" data-scroll-left="null" data-testid="output_9" style="width: 1356px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S10'><span>It's just ten copies of the beta function through a single cell.</span></div><h2 class = 'S12'><span>Adjust Qtune to 0.25</span></h2><div class = 'S0'><span>Let's go back to a single cell an adjust the quadrupoles such that the tune for one cell is Qtune=0.25. Which focal length approximatelydoes the job? Try to set the tune to 0.16666=1/6. What is F in that case?</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S13'><span>3.356</span><span style="white-space: pre"><span style="color: rgb(2, 128, 9);">% adjust focal length F</span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>ans = 3.3560</div></div></div><div class="inlineWrapper"><div class = 'S14'><span style="white-space: pre"><span >F=ans; </span><span style="color: rgb(2, 128, 9);">% focal length of the quadrupoles</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >fodo=[ 1, 5, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, -F; </span><span style="color: rgb(2, 128, 9);">% QD</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, F; </span><span style="color: rgb(2, 128, 9);">% QF/2</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 5, 0.2, 0]; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline=fodo;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end); </span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >[Qtune,alpha0,beta0,gamma0]=R2beta(Rend)</span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>Qtune = 0.0963</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>alpha0 = 1.0476</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>beta0 = 6.7193</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>gamma0 = 0.3122</div></div></div></div><h2 class = 'S12'><span>Automatic tune adjustment</span></h2><div class = 'S0'><span>Now we use fminsearch() to set the tune to a desired value. To do so we need to define a cost function that I often call </span><span texencoding="\chi^2" style="vertical-align:-5px"><img src="" width="17" height="19" /></span><span> or chisq. Here we use the name </span><span style=' font-family: monospace;'>chisq_tune()</span><span>. It receives a guess for the focal length </span><span style=' font-family: monospace;'>F</span><span> and returns the difference betwen the tune value for that </span><span style=' font-family: monospace;'>F</span><span> and the desired tune, here 0.25. Such a function is defined in the appendix.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(2, 128, 9);">% global beamline % needed to make it available inside chisq_tune()</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >F0=3; </span><span style="color: rgb(2, 128, 9);">% starting guess</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >[Fnew,fval]=fminsearch(@chisq_tune,F0) </span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>Fnew = 1.4142</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>fval = 1.9933e-11</div></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >beamline </span><span style="color: rgb(2, 128, 9);">% just look at the new beamline description</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="4DF52501" data-scroll-top="null" data-scroll-left="null" data-width="1326" data-testid="output_17" style="width: 1356px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1326px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">beamline = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">5×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":"4","totalRows":"5","charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 290px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 1.0000 5.0000 0.2000 0
2.0000 1.0000 0 -1.4142
1.0000 10.0000 0.2000 0
2.0000 1.0000 0 1.4142
1.0000 5.0000 0.2000 0
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div></div><div class = 'S10'><span>Fnew is the new focal length that will give you the desired tune. let's verify that</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end); </span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >Qtune=R2beta(Rend)</span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>Qtune = 0.2500</div></div></div></div><div class = 'S10'><span>Now look at the function chisq_tune() in the appendix and change it such that Qtune becomes 1/6. What value for the focal length do you find? </span></div><h2 class = 'S12'><span>Matching FODO cells with Qtune=0.1666 to those with Qtune=0.25</span></h2><div class = 'S0'><span>This is also called matching </span><span texencoding="60^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cell to a </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cell, because of </span><span texencoding="60^o/360^0=0.1666" style="vertical-align:-5px"><img src="" width="118" height="20" /></span><span> and </span><span texencoding="90^o/360^0=0.25" style="vertical-align:-5px"><img src="" width="103" height="20" /></span><span>.</span></div><div class = 'S0'><span>We found in the previous matching exercise that </span><span texencoding="F=\sqrt{2}" style="vertical-align:-5px"><img src="" width="52.5" height="20" /></span><span> gave Qtune=0.25 and and </span><span texencoding="F=2" style="vertical-align:-5px"><img src="" width="40" height="18" /></span><span> gave Qtune=0.1666, which allows us to define the two cells in the following way</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >F=2; </span><span style="color: rgb(2, 128, 9);">% focal length of the quadrupoles</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >fodo60=[ 1, 5, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, -F; </span><span style="color: rgb(2, 128, 9);">% QD</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, F; </span><span style="color: rgb(2, 128, 9);">% QF/2</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 5, 0.2, 0]; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >F=sqrt(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >fodo90=[ 1, 5, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, -F; </span><span style="color: rgb(2, 128, 9);">% QD</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0.0, F; </span><span style="color: rgb(2, 128, 9);">% QF/2</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span > 1, 5, 0.2, 0]; </span></span></div></div></div><div class = 'S10'><span>Let's look at the beta function along that beamline. To do so we first calculate the periodic beam matrix for the </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cell</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline=fodo60;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >[Qtune,alpha60,beta60,gamma60]=R2beta(Rend)</span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>Qtune = 0.1667</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>alpha60 = 1.1547</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>beta60 = 4.0415</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>gamma60 = 0.5774</div></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >sigma60=[beta60,-alpha60;-alpha60,gamma60]</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="A9A393B1" data-scroll-top="null" data-scroll-left="null" data-width="1326" data-testid="output_23" style="width: 1356px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1326px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">sigma60 = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">2×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":"2","totalRows":"2","charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 146px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 4.0415 -1.1547
-1.1547 0.5774
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div></div><div class = 'S10'><span>Now let's build a long beamline, starting with two fodo60, followed by six fodo90 cells and display the betafunction along this beam line, if we start with the input beam sigma60</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline=[fodo60;fodo60;repmat(fodo90,6,1)];</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >data=zeros(1,nmat); </span><span style="color: rgb(2, 128, 9);">% allocate memory</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:nmat</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > sigma=Racc(:,:,k)*sigma60*Racc(:,:,k)';</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > data(k)=sigma(1,1); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >plot(spos,data,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); xlabel(</span><span style="color: rgb(170, 4, 249);">'s [m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\beta [m]'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Unmatched fodo60 to fodo90 transition'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="8F9428E9" data-scroll-top="null" data-scroll-left="null" data-testid="output_24" style="width: 1356px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S0'><span>We observe that the beam that is matched for the fodo60 cell does not show a regular pattern once it enters the fodo90 cells. We therefore try to adjust the two quadrupoles in the second fodo60 cell to try to minimize the irregularity. Note that these two quads are now in line 7 and 9, respectively. The second cell we refer to as the </span><span style=' font-style: italic;'>matching cell.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline(7,4)=</span></span><span>-2.044</span><span style="white-space: pre"><span >;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline(9,4)=</span></span><span>2.0934</span><span style="white-space: pre"><span >;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >data=zeros(1,nmat); </span><span style="color: rgb(2, 128, 9);">% allocate memory</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:nmat</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > sigma=Racc(:,:,k)*sigma60*Racc(:,:,k)';</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > data(k)=sigma(1,1); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >plot(spos,data,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); xlabel(</span><span style="color: rgb(170, 4, 249);">'s [m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\beta [m]'</span><span >); ylim([0,10])</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Matching by hand'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="9D886997" data-scroll-top="null" data-scroll-left="null" data-testid="output_25" style="width: 1356px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S10'><span>Did you manage to get a smooth and periodic beta function through the downstream part of the beamline? If not, try out the following code, which uses </span><span style=' font-family: monospace;'>fminsearch()</span><span> to adjust the two quads such that </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">α</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">β</span><span> at the start become those of the downstream </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cells at the start of the third cell a s=8 m, which is the first </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cell.</span></div><h2 class = 'S12'><span>Automatic matching</span></h2><div class = 'S0'><span>Let us first find out what </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">α</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">β</span><span> at the start of the </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cells is</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline=fodo90;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >[Qtune,alpha90,beta90,gamma90]=R2beta(Rend)</span></span></div><div class = 'S7'><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>Qtune = 0.2500</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>alpha90 = 1.4142</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>beta90 = 3</div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>gamma90 = 1.0000</div></div></div></div><div class = 'S10'><span>We find that </span><span texencoding="\beta=3" style="vertical-align:-5px"><img src="" width="37.5" height="18" /></span><span>m and </span><span texencoding="\alpha=\sqrt{2}" style="vertical-align:-5px"><img src="" width="50" height="20" /></span><span>. Now we need to define a </span><span style=' font-family: monospace;'>chisq_beta()</span><span> function that takes the two focal lengths for the two quadrupoles as input and returns the squared difference between the calculated beta function at the end of the matching cell and those of the downstrem </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cells. Let's base the matching cell on the </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cell</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >sigma0=sigma60; </span><span style="color: rgb(2, 128, 9);">% use sigma60 as starting matrix "global sigma0"</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline=fodo90;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >F0=[-2,2]; </span><span style="color: rgb(2, 128, 9);">% initial guesses</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >[F,fval]=fminsearch(@chisq_beta,F0)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="654DADBF" data-scroll-top="null" data-scroll-left="null" data-width="1326" data-testid="output_30" style="width: 1356px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1326px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">F = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">1×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":"2","totalRows":"1","charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 146px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> -2.0294 1.6602
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>fval = 2.3561e-09</div></div></div><div class="inlineWrapper"><div class = 'S15'><span style="white-space: pre"><span >matching=beamline; </span><span style="color: rgb(2, 128, 9);">% save the resulting beamline as matching cell</span></span></div></div></div><div class = 'S10'><span>And now we can reassemble the beamline consisting of one fodo60 cell, a matching cell, and four fodo90 cells, calculate the transfer matrices and plot the beta functions.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >beamline=[fodo60;matching;repmat(fodo90,4,1)];</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >data=zeros(1,nmat); </span><span style="color: rgb(2, 128, 9);">% allocate memory</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:nmat</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > sigma=Racc(:,:,k)*sigma60*Racc(:,:,k)';</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > data(k)=sigma(1,1); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >plot(spos,data,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); xlabel(</span><span style="color: rgb(170, 4, 249);">'s [m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\beta [m]'</span><span >); ylim([0,10])</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'After automatic matching'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="43CAAF0E" data-scroll-top="null" data-scroll-left="null" data-testid="output_32" style="width: 1356px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S10'><span>And that concludes this quick tutorial. Please do also have a look at the service functions in the Appendix below. They generate the transfer matrices, translate a transfer matrix to Twiss parameters, and calculate the chisq for the automatic matching of the tune and the beta function, respectively.</span></div><h2 class = 'S12'><span>Appendix</span></h2><h3 class = 'S16'><span>Transfer matrix for a drift space </span><span style=' font-family: monospace;'>D(L)</span></h3><div class = 'S0'><span>The following receives the length</span><span style=' font-family: monospace;'> L </span><span>of a drift space and resturns the 2x2 transfer matrix</span><span style=' font-family: monospace;'> out</span><span> for a drift space</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=D(L)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > out=[1,L;0,1];</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S16'><span>Transfer matrix for a thin-lens quadrupole </span><span style=' font-family: monospace;'>Q(F)</span></h3><div class = 'S0'><span>The following receives the length</span><span style=' font-family: monospace;'> L </span><span>of a drift space and resturns the 2x2 transfer matrix</span><span style=' font-family: monospace;'> out</span><span> for a drift space</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=Q(F)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >out=eye(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >abs(F)<1e-8, </span><span style="color: rgb(14, 0, 255);">return</span><span >; </span><span style="color: rgb(14, 0, 255);">end</span><span > </span><span style="color: rgb(2, 128, 9);">% turn off, if F=0</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >out=[1,0;-1/F,1]; </span><span style="color: rgb(2, 128, 9);">% transfer matrix</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S16'><span>The function </span><span style=' font-family: monospace;'>calcmat()</span><span> to calculate all transfer matrices</span></h3><div class = 'S0'><span>The following function receives the </span><span style=' font-family: monospace;'>beamline</span><span> description as input and returns</span></div><ul class = 'S2'><li class = 'S3'><span>Racc(2,2,nmat): transfer matrices from the start to the each of each segment, such that R(:,:,end) is the transfer matrix from the start to the end of the beamline.</span></li><li class = 'S3'><span>spos: position along the beamline after each segment, useful when plotting.</span></li><li class = 'S3'><span>nmat: number of segments </span></li><li class = 'S3'><span>nlines: number of lines in the beamline </span></li></ul><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(2, 128, 9);">% calcmat.m, calculate the transfer-matrices</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >[Racc,spos,nmat,nlines]=calcmat(beamline)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >ndim=size(D(1),1); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >nlines=size(beamline,1); </span><span style="color: rgb(2, 128, 9);">% number of lines in beamline</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >nmat=sum(beamline(:,2))+1; </span><span style="color: rgb(2, 128, 9);">% sum over repeat-count in column 2</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Racc=zeros(ndim,ndim,nmat); </span><span style="color: rgb(2, 128, 9);">% matrices from start to element-end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Racc(:,:,1)=eye(ndim); </span><span style="color: rgb(2, 128, 9);">% initialize first with unit matrix</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >spos=zeros(nmat,1); </span><span style="color: rgb(2, 128, 9);">% longitudinal position</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >ic=1; </span><span style="color: rgb(2, 128, 9);">% element counter</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >line=1:nlines </span><span style="color: rgb(2, 128, 9);">% loop over input elements</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">for </span><span >seg=1:beamline(line,2) </span><span style="color: rgb(2, 128, 9);">% loop over repeat-count </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > ic=ic+1; </span><span style="color: rgb(2, 128, 9);">% next element </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > Rcurr=eye(2); </span><span style="color: rgb(2, 128, 9);">% matrix in next element</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">switch </span><span >beamline(line,1) </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">case </span><span >1 </span><span style="color: rgb(2, 128, 9);">% drift</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > Rcurr=D(beamline(line,3));</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">case </span><span >2 </span><span style="color: rgb(2, 128, 9);">% thin quadrupole</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > Rcurr=Q(beamline(line,4)); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">otherwise</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > disp(</span><span style="color: rgb(170, 4, 249);">'unsupported code'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span><span > </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > Racc(:,:,ic)=Rcurr*Racc(:,:,ic-1); </span><span style="color: rgb(2, 128, 9);">% concatenate </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > spos(ic)=spos(ic-1)+beamline(line,3); </span><span style="color: rgb(2, 128, 9);">% position of element </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S16'><span>R2beta()</span></h3><div class = 'S0'><span>The function R2beta() receives a transfer matrix </span><span style=' font-family: monospace;'>R</span><span> as input and returns the "tune" </span><span texencoding="Q=\mu/2\pi" style="vertical-align:-5px"><img src="" width="65" height="19" /></span><span> for the transfer matrix R, as well as the periodic Twiss parameters </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">α</span><span>, </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">β</span><span>, and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">γ</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >[Q,alpha,beta,gamma]=R2beta(R)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >mu=acos(0.5*(R(1,1)+R(2,2)));</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(R(1,2)<0), mu=2*pi-mu; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Q=mu/(2*pi);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beta=R(1,2)/sin(mu);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >alpha=(0.5*(R(1,1)-R(2,2)))/sin(mu);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >gamma=(1+alpha^2)/beta;</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S16'><span>chisq_tune()</span></h3><div class = 'S0'><span>This function receives a guess for the focal length F and calculates the squared difference between the desired tune and tune for this F. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >chisq=chisq_tune(F)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >beamline sigma0</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline(2,4)=-F; </span><span style="color: rgb(2, 128, 9);">% set the two quadrupoles, here QD</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline(4,4)=F; </span><span style="color: rgb(2, 128, 9);">% and here QF</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline); </span><span style="color: rgb(2, 128, 9);">% update transfer matrices</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end); </span><span style="color: rgb(2, 128, 9);">% the last one</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Qtune,alpha0,beta0,gamma0]=R2beta(Rend); </span><span style="color: rgb(2, 128, 9);">% get Qtune</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >chisq=(Qtune-0.25)^2; </span><span style="color: rgb(2, 128, 9);">% difference to minimize</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S16'><span>chisq_beta()</span></h3><div class = 'S0'><span>This function receives the focal lengths of the two quads in the matching cell and returns the aquared difference between </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">α</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">β</span><span> for the </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> cell and the one derived from the provided quad values</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >chisq=chisq_beta(F)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >beamline sigma0</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline(2,4)=F(1); </span><span style="color: rgb(2, 128, 9);">% set the two quadrupoles, here QD</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beamline(4,4)=F(2); </span><span style="color: rgb(2, 128, 9);">% and here QF</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos,nmat,nlines]=calcmat(beamline); </span><span style="color: rgb(2, 128, 9);">% update transfer matrices</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >sigma=Rend*sigma0*Rend';</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beta=sigma(1,1); alpha=-sigma(1,2);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >beta90=3; alpha90=sqrt(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >chisq=(beta-beta90)^2+(alpha-alpha90)^2;</span></span></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S10'><span></span></div><div class = 'S0'></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% 2D beam optics (Section 3.3.3, 3.3.5, 3.6.1, and 3.6.2)
% Volker Ziemann, 211106, CC-BY-SA-4.0
%
% In accelerators the elements, such as a magnet or the beam pipe between the
% magnets, follow one another and we represent them as lines in an array that
% describes this sequence. We describe drift space with a code=1 in the first
% column and thin quadrupoles by code=2. The second column contains the number
% the line is repeated internally, the third column displays the lenth of the
% element and the fourth column the strength. For a thin quadrupole the latter
% is specified as its focal length F. Summarizing
%%
% * First column: code, drift=1, quad=2
% * Second column: repeat code for the element
% * Third column: length of one segment
% * Fourth column: strength of one segment, focal length for a thin quadrupole.
%%
% A simple FODO cell that starts in the middle of the drift space before the
% defocusing quadrupole is thus defined in the following array, named |fodo,|
% where the focal length is defined as |F=2.1.| Just below the defionition of
% fodo we define the |beamline| as 20 copies of |fodo| stacked on top of each
% other.
global beamline sigma0 % needed for some functions.
F=2.1; % focal length of the quadrupoles
fodo=[ 1, 5, 0.2, 0; % 5* D(L/10)
2, 1, 0.0, -F; % QD
1, 10, 0.2, 0; % 10* D(L/10)
2, 1, 0.0, F; % QF/2
1, 5, 0.2, 0] % 5* D(L/10)
beamline=repmat(fodo,20,1) % name must be 'beamline'
%%
% Now calculate all the transfer matrices with the function |calcmat()| that
% is defined in the appendix
[Racc,spos,nmat,nlines]=calcmat(beamline);
%%
% Then we allocate memory to store the positions after each segment that we
% want to display later
data=zeros(1,nmat); % allocate memory
%%
% and define the input state x0, which contains the starting position and angle
x0=[0.001;0]; % 1 mm offset at start
%%
% before mapping the input x0 to the state vector x at the end of each segment
% along the beam line
for k=1:nmat
x=Racc(:,:,k)*x0;
data(k)=x(1); % store the position
end
%%
% and annotate the axes
plot(spos,1e3*data,'k'); % 1e3 to convert to mm
xlabel('s [m]');
ylabel(' x [mm]');
title('Trajectory')
xlim([spos(1),spos(end)])
%% Beta functions
% Now we are ready to calculate the beta functions along the beamline. Let's
% first calculate the transfer matrices for a single fodo cell.
beamline=fodo; % just a single FODO cell
[Racc,spos,nmat,nlines]=calcmat(beamline);
Rend=Racc(:,:,end); % the TM from start to end
%%
% and the periodic Twiss parameters $\alpha$, $\beta$, and $\gamma$
[Qtune,alpha0,beta0,gamma0]=R2beta(Rend)
%%
% where we observe that Qtune is 0.1580. Change the focal length |F| way up
% in this script to a different value and observe how |Qtune| changes.
%%
% We now use the Twiss parameters to construct the *initial* beam matrix sigma0
sigma0=[beta0,-alpha0;-alpha0,gamma0]
%%
% and map this through one FODO cell
data=zeros(1,nmat); % allocate memory
for k=1:nmat
sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)';
data(k)=sigma(1,1); % that's the beta
end
%%
% and plot the beta function through one FODO cell
plot(spos,data,'k')
xlabel('s [m]'); ylabel('\beta [m]')
title('Beta function in one FODO cell')
%%
% We observe an oscillation with aminimum at the location of the defocusing
% quadrupole at s=1 m and a maximum in the focusing quadrupole at s=3 m.
%% Betafunction through ten FODO cells
% Mapping the beta function through 10 FODO cells makes it necessary to increas
% the length of the |beamline| and update all transfer matrices
beamline=repmat(fodo,10,1);
[Racc,spos,nmat,nlines]=calcmat(beamline);
%%
% We do not need to re-calculate sigma0, because it is periodic and we can therefore
% use the one determined from a single cell. Let's propagate the beta function
% |sigma0| through the 10 FODO cells and plot the result
data=zeros(1,nmat); % allocate memory
for k=1:nmat
sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)';
data(k)=sigma(1,1); % that's the beta
end
plot(spos,data,'k')
xlabel('s [m]'); ylabel('\beta [m]')
title('Beta function in ten FODO cells')
%%
% It's just ten copies of the beta function through a single cell.
%% Adjust Qtune to 0.25
% Let's go back to a single cell an adjust the quadrupoles such that the tune
% for one cell is Qtune=0.25. Which focal length approximatelydoes the job? Try
% to set the tune to 0.16666=1/6. What is F in that case?
3.356% adjust focal length F
F=ans; % focal length of the quadrupoles
fodo=[ 1, 5, 0.2, 0;
2, 1, 0.0, -F; % QD
1, 10, 0.2, 0;
2, 1, 0.0, F; % QF/2
1, 5, 0.2, 0];
beamline=fodo;
[Racc,spos,nmat,nlines]=calcmat(beamline);
Rend=Racc(:,:,end);
[Qtune,alpha0,beta0,gamma0]=R2beta(Rend)
%% Automatic tune adjustment
% Now we use fminsearch() to set the tune to a desired value. To do so we need
% to define a cost function that I often call $\chi^2$ or chisq. Here we use the
% name |chisq_tune()|. It receives a guess for the focal length |F| and returns
% the difference betwen the tune value for that |F| and the desired tune, here
% 0.25. Such a function is defined in the appendix.
% global beamline % needed to make it available inside chisq_tune()
F0=3; % starting guess
[Fnew,fval]=fminsearch(@chisq_tune,F0)
beamline % just look at the new beamline description
%%
% Fnew is the new focal length that will give you the desired tune. let's verify
% that
[Racc,spos,nmat,nlines]=calcmat(beamline);
Rend=Racc(:,:,end);
Qtune=R2beta(Rend)
%%
% Now look at the function chisq_tune() in the appendix and change it such that
% Qtune becomes 1/6. What value for the focal length do you find?
%% Matching FODO cells with Qtune=0.1666 to those with Qtune=0.25
% This is also called matching $60^o$ cell to a $90^o$ cell, because of $60^o/360^0=0.1666$
% and $90^o/360^0=0.25$.
%
% We found in the previous matching exercise that $F=\sqrt{2}$ gave Qtune=0.25
% and and $F=2$ gave Qtune=0.1666, which allows us to define the two cells in
% the following way
F=2; % focal length of the quadrupoles
fodo60=[ 1, 5, 0.2, 0;
2, 1, 0.0, -F; % QD
1, 10, 0.2, 0;
2, 1, 0.0, F; % QF/2
1, 5, 0.2, 0];
F=sqrt(2);
fodo90=[ 1, 5, 0.2, 0;
2, 1, 0.0, -F; % QD
1, 10, 0.2, 0;
2, 1, 0.0, F; % QF/2
1, 5, 0.2, 0];
%%
% Let's look at the beta function along that beamline. To do so we first calculate
% the periodic beam matrix for the $90^o$ cell
beamline=fodo60;
[Racc,spos,nmat,nlines]=calcmat(beamline);
Rend=Racc(:,:,end);
[Qtune,alpha60,beta60,gamma60]=R2beta(Rend)
sigma60=[beta60,-alpha60;-alpha60,gamma60]
%%
% Now let's build a long beamline, starting with two fodo60, followed by six
% fodo90 cells and display the betafunction along this beam line, if we start
% with the input beam sigma60
beamline=[fodo60;fodo60;repmat(fodo90,6,1)];
[Racc,spos,nmat,nlines]=calcmat(beamline);
data=zeros(1,nmat); % allocate memory
for k=1:nmat
sigma=Racc(:,:,k)*sigma60*Racc(:,:,k)';
data(k)=sigma(1,1);
end
plot(spos,data,'k'); xlabel('s [m]'); ylabel('\beta [m]')
title('Unmatched fodo60 to fodo90 transition')
%%
% We observe that the beam that is matched for the fodo60 cell does not show
% a regular pattern once it enters the fodo90 cells. We therefore try to adjust
% the two quadrupoles in the second fodo60 cell to try to minimize the irregularity.
% Note that these two quads are now in line 7 and 9, respectively. The second
% cell we refer to as the _matching cell._
beamline(7,4)=-2.044;
beamline(9,4)=2.0934;
[Racc,spos,nmat,nlines]=calcmat(beamline);
data=zeros(1,nmat); % allocate memory
for k=1:nmat
sigma=Racc(:,:,k)*sigma60*Racc(:,:,k)';
data(k)=sigma(1,1);
end
plot(spos,data,'k'); xlabel('s [m]'); ylabel('\beta [m]'); ylim([0,10])
title('Matching by hand')
%%
% Did you manage to get a smooth and periodic beta function through the downstream
% part of the beamline? If not, try out the following code, which uses |fminsearch()|
% to adjust the two quads such that $\alpha$ and $\beta$ at the start become those
% of the downstream $90^o$ cells at the start of the third cell a s=8 m, which
% is the first $90^o$ cell.
%% Automatic matching
% Let us first find out what $\alpha$ and $\beta$ at the start of the $90^o$
% cells is
beamline=fodo90;
[Racc,spos,nmat,nlines]=calcmat(beamline);
Rend=Racc(:,:,end);
[Qtune,alpha90,beta90,gamma90]=R2beta(Rend)
%%
% We find that $\beta=3$m and $\alpha=\sqrt{2}$. Now we need to define a |chisq_beta()|
% function that takes the two focal lengths for the two quadrupoles as input and
% returns the squared difference between the calculated beta function at the
% end of the matching cell and those of the downstrem $90^o$ cells. Let's base
% the matching cell on the $90^o$ cell
sigma0=sigma60; % use sigma60 as starting matrix "global sigma0"
beamline=fodo90;
F0=[-2,2]; % initial guesses
[F,fval]=fminsearch(@chisq_beta,F0)
matching=beamline; % save the resulting beamline as matching cell
%%
% And now we can reassemble the beamline consisting of one fodo60 cell, a matching
% cell, and four fodo90 cells, calculate the transfer matrices and plot the beta
% functions.
beamline=[fodo60;matching;repmat(fodo90,4,1)];
[Racc,spos,nmat,nlines]=calcmat(beamline);
data=zeros(1,nmat); % allocate memory
for k=1:nmat
sigma=Racc(:,:,k)*sigma60*Racc(:,:,k)';
data(k)=sigma(1,1);
end
plot(spos,data,'k'); xlabel('s [m]'); ylabel('\beta [m]'); ylim([0,10])
title('After automatic matching')
%%
% And that concludes this quick tutorial. Please do also have a look at the
% service functions in the Appendix below. They generate the transfer matrices,
% translate a transfer matrix to Twiss parameters, and calculate the chisq for
% the automatic matching of the tune and the beta function, respectively.
%% Appendix
% Transfer matrix for a drift space |D(L)|
% The following receives the length |L| of a drift space and resturns the 2x2
% transfer matrix |out| for a drift space
function out=D(L)
out=[1,L;0,1];
end
% Transfer matrix for a thin-lens quadrupole |Q(F)|
% The following receives the length |L| of a drift space and resturns the 2x2
% transfer matrix |out| for a drift space
function out=Q(F)
out=eye(2);
if abs(F)<1e-8, return; end % turn off, if F=0
out=[1,0;-1/F,1]; % transfer matrix
end
% The function |calcmat()| to calculate all transfer matrices
% The following function receives the |beamline| description as input and returns
%%
% * Racc(2,2,nmat): transfer matrices from the start to the each of each segment,
% such that R(:,:,end) is the transfer matrix from the start to the end of the
% beamline.
% * spos: position along the beamline after each segment, useful when plotting.
% * nmat: number of segments
% * nlines: number of lines in the beamline
% calcmat.m, calculate the transfer-matrices
function [Racc,spos,nmat,nlines]=calcmat(beamline)
ndim=size(D(1),1);
nlines=size(beamline,1); % number of lines in beamline
nmat=sum(beamline(:,2))+1; % sum over repeat-count in column 2
Racc=zeros(ndim,ndim,nmat); % matrices from start to element-end
Racc(:,:,1)=eye(ndim); % initialize first with unit matrix
spos=zeros(nmat,1); % longitudinal position
ic=1; % element counter
for line=1:nlines % loop over input elements
for seg=1:beamline(line,2) % loop over repeat-count
ic=ic+1; % next element
Rcurr=eye(2); % matrix in next element
switch beamline(line,1)
case 1 % drift
Rcurr=D(beamline(line,3));
case 2 % thin quadrupole
Rcurr=Q(beamline(line,4));
otherwise
disp('unsupported code')
end
Racc(:,:,ic)=Rcurr*Racc(:,:,ic-1); % concatenate
spos(ic)=spos(ic-1)+beamline(line,3); % position of element
end
end
end
% R2beta()
% The function R2beta() receives a transfer matrix |R| as input and returns
% the "tune" $Q=\mu/2\pi$ for the transfer matrix R, as well as the periodic Twiss
% parameters $\alpha$, $\beta$, and $\gamma$.
function [Q,alpha,beta,gamma]=R2beta(R)
mu=acos(0.5*(R(1,1)+R(2,2)));
if (R(1,2)<0), mu=2*pi-mu; end
Q=mu/(2*pi);
beta=R(1,2)/sin(mu);
alpha=(0.5*(R(1,1)-R(2,2)))/sin(mu);
gamma=(1+alpha^2)/beta;
end
% chisq_tune()
% This function receives a guess for the focal length F and calculates the squared
% difference between the desired tune and tune for this F.
function chisq=chisq_tune(F)
global beamline sigma0
beamline(2,4)=-F; % set the two quadrupoles, here QD
beamline(4,4)=F; % and here QF
[Racc,spos,nmat,nlines]=calcmat(beamline); % update transfer matrices
Rend=Racc(:,:,end); % the last one
[Qtune,alpha0,beta0,gamma0]=R2beta(Rend); % get Qtune
chisq=(Qtune-0.25)^2; % difference to minimize
end
% chisq_beta()
% This function receives the focal lengths of the two quads in the matching
% cell and returns the aquared difference between $\alpha$ and $\beta$ for the
% $90^o$ cell and the one derived from the provided quad values
function chisq=chisq_beta(F)
global beamline sigma0
beamline(2,4)=F(1); % set the two quadrupoles, here QD
beamline(4,4)=F(2); % and here QF
[Racc,spos,nmat,nlines]=calcmat(beamline); % update transfer matrices
Rend=Racc(:,:,end);
sigma=Rend*sigma0*Rend';
beta=sigma(1,1); alpha=-sigma(1,2);
beta90=3; alpha90=sqrt(2);
chisq=(beta-beta90)^2+(alpha-alpha90)^2;
end
%%
%
%
%
##### SOURCE END #####
-->
</div></body></html>