-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBeamOpticsSupportFunctions2D.html
119 lines (119 loc) · 29.9 KB
/
BeamOpticsSupportFunctions2D.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Beam optics support functions 2D (Section 3.3)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.S2 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: bold; text-align: left; }
.S3 { margin: 10px 0px 20px; padding-left: 0px; font-family: Helvetica, Arial, sans-serif; font-size: 14px; }
.S4 { margin-left: 56px; line-height: 21px; min-height: 0px; text-align: left; white-space: pre-wrap; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S8 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Beam optics support functions 2D (Section 3.3)</span></h1><div class = 'S0'><span>Volker Ziemann, 211119</span></div><div class = 'S0'><span>In this live script we define the functions for the 2D beam optics calculations, such as </span><span style=' font-family: monospace;'>calcmat()</span><span> that a frequently used in other calculations. All described functions reside in the subdirectory 2D that is contained in the archive </span><span style=' font-family: monospace;'>BeamOpticsSupportFile.zip</span><span>. Any scripts using these function need to include that subirectory with the command "</span><span style=' font-family: monospace;'>addpath ./2D</span><span>".</span></div><h3 class = 'S2'><span>The function </span><span style=' font-family: monospace;'>calcmat()</span><span> to calculate all transfer matrices</span></h3><div class = 'S0'><span>The following function receives the </span><span style=' font-family: monospace;'>beamline</span><span> description as input and returns</span></div><ul class = 'S3'><li class = 'S4'><span>Racc(2,2,nmat): transfer matrices from the start to the each of each segment, such that R(:,:,end) is the transfer matrix from the start to the end of the beamline.</span></li><li class = 'S4'><span>spos: position along the beamline after each segment, useful when plotting.</span></li><li class = 'S4'><span>nmat: number of segments </span></li><li class = 'S4'><span>nlines: number of lines in the beamline </span></li></ul><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >[Racc,spos,nmat,nlines]=calcmat(beamline)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >ndim=size(DD(1),1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >nlines=size(beamline,1); </span><span style="color: rgb(2, 128, 9);">% number of lines in beamline</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >nmat=sum(beamline(:,2))+1; </span><span style="color: rgb(2, 128, 9);">% sum over repeat-count in column 2</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >Racc=zeros(ndim,ndim,nmat); </span><span style="color: rgb(2, 128, 9);">% matrices from start to element-end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >Racc(:,:,1)=eye(ndim); </span><span style="color: rgb(2, 128, 9);">% initialize first with unit matrix</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >spos=zeros(nmat,1); </span><span style="color: rgb(2, 128, 9);">% longitudinal position</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >ic=1; </span><span style="color: rgb(2, 128, 9);">% element counter</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >line=1:nlines </span><span style="color: rgb(2, 128, 9);">% loop over input elements</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">for </span><span >seg=1:beamline(line,2) </span><span style="color: rgb(2, 128, 9);">% loop over repeat-count </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > ic=ic+1; </span><span style="color: rgb(2, 128, 9);">% next element </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > Rcurr=eye(2); </span><span style="color: rgb(2, 128, 9);">% matrix in next element</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">switch </span><span >beamline(line,1) </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">case </span><span >1 </span><span style="color: rgb(2, 128, 9);">% drift</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > Rcurr=DD(beamline(line,3));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">case </span><span >2 </span><span style="color: rgb(2, 128, 9);">% thin quadrupole</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > Rcurr=Q(beamline(line,4)); </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">case </span><span >5 </span><span style="color: rgb(2, 128, 9);">% thick quadrupole</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > Rcurr=QQ(beamline(line,3),beamline(line,4));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">otherwise</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > disp(</span><span style="color: rgb(170, 4, 249);">'unsupported code'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span><span > </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > Racc(:,:,ic)=Rcurr*Racc(:,:,ic-1); </span><span style="color: rgb(2, 128, 9);">% concatenate </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > spos(ic)=spos(ic-1)+beamline(line,3); </span><span style="color: rgb(2, 128, 9);">% position of element </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S8'><span>Transfer matrix for a drift space </span><span style=' font-family: monospace;'>DD(L)</span></h3><div class = 'S0'><span>The function </span><span style=' font-family: monospace;'>DD()</span><span> receives the length</span><span style=' font-family: monospace;'> L </span><span>of a drift space and resturns the 2x2 transfer matrix</span><span style=' font-family: monospace;'> out</span><span> for a drift space.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=DD(L)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > out=[1,L;0,1];</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S2'><span>Transfer matrix for a thin-lens quadrupole </span><span style=' font-family: monospace;'>Q(F)</span></h3><div class = 'S0'><span>The function </span><span style=' font-family: monospace;'>Q()</span><span> receives the focal length</span><span style=' font-family: monospace;'> F </span><span>as input and returns the 2x2 transfer matrix</span><span style=' font-family: monospace;'> out</span><span> for a thin-lens quadrupole.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=Q(F)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >out=eye(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >abs(F)<1e-8, </span><span style="color: rgb(14, 0, 255);">return</span><span >; </span><span style="color: rgb(14, 0, 255);">end</span><span > </span><span style="color: rgb(2, 128, 9);">% turn off, if F=0</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >out=[1,0;-1/F,1]; </span><span style="color: rgb(2, 128, 9);">% transfer matrix</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S2'><span>Transfer matrix for a thick quadrupole </span><span style=' font-family: monospace;'>Q(F)</span></h3><div class = 'S0'><span>The function </span><span style=' font-family: monospace;'>QQ()</span><span> receives the length</span><span style=' font-family: monospace;'> L </span><span>and </span><span style=' font-family: monospace;'>k1 </span><span>as input and returns the 2x2 transfer matrix</span><span style=' font-family: monospace;'> out</span><span> for a thick quadrupole.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=QQ(L,k1)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >ksq=sqrt(abs(k1));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >abs(k1) < 1e-6</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > out=[1,L;0,1];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">elseif </span><span >k1>0</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > out=[cos(ksq*L),sin(ksq*L)/ksq;-ksq*sin(ksq*L),cos(ksq*L)]; </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > out=[cosh(ksq*L),sinh(ksq*L)/ksq;ksq*sinh(ksq*L),cosh(ksq*L)];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S2'><span>R2beta()</span></h3><div class = 'S0'><span>The function </span><span style=' font-family: monospace;'>R2beta()</span><span> receives a transfer matrix </span><span style=' font-family: monospace;'>R</span><span> as input and returns the "tune" </span><span texencoding="Q=\mu/2\pi" style="vertical-align:-5px"><img src="" width="65" height="19" /></span><span> for the transfer matrix R, as well as the periodic Twiss parameters </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">α</span><span>, </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">β</span><span>, and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">γ</span><span> following Equation 3.60.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >[Q,alpha,beta,gamma]=R2beta(R)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >mu=acos(0.5*(R(1,1)+R(2,2)));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(R(1,2)<0), mu=2*pi-mu; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >Q=mu/(2*pi);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >beta=R(1,2)/sin(mu);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >alpha=(0.5*(R(1,1)-R(2,2)))/sin(mu);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >gamma=(1+alpha^2)/beta;</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h3 class = 'S2'><span>plot_betas()</span></h3><div class = 'S0'><span>The function </span><span style=' font-family: monospace;'>plot_betas()</span><span> receives the </span><span style=' font-family: monospace;'>beamline</span><span> description and the initial 2x2 beam matrix </span><span style=' font-family: monospace;'>sigma0</span><span> as input an produces a plot of the beta function. This function assumes that the emittance of sigma0 is 1, or </span><span texencoding="\det\sigma_0=1" style="vertical-align:-6px"><img src="" width="62.5" height="20" /></span><span>, such that </span><span texencoding="\sigma_{11}=\beta" style="vertical-align:-6px"><img src="" width="47.5" height="20" /></span><span> is the beta function. It then uses Equation 3.43 to propagate </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">σ</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >plot_betas(beamline,sigma0)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >[Racc,spos]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >betax=zeros(1,length(spos)); </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:length(spos)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)';</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > betax(k)=sigma(1,1); </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >plot(spos,betax,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">' s[m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\beta_x [m]'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >axis([0, max(spos), 0, 1.05*max(betax)])</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
function [Racc,spos,nmat,nlines]=calcmat(beamline)
% CALCMAT Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Beam optics support functions 2D (Section 3.3)
% Volker Ziemann, 211119
%
% In this live script we define the functions for the 2D beam optics calculations,
% such as |calcmat()| that a frequently used in other calculations. All described
% functions reside in the subdirectory 2D that is contained in the archive |BeamOpticsSupportFile.zip|.
% Any scripts using these function need to include that subirectory with the command
% "|addpath ./2D|".
% The function |calcmat()| to calculate all transfer matrices
% The following function receives the |beamline| description as input and returns
%%
% * Racc(2,2,nmat): transfer matrices from the start to the each of each segment,
% such that R(:,:,end) is the transfer matrix from the start to the end of the
% beamline.
% * spos: position along the beamline after each segment, useful when plotting.
% * nmat: number of segments
% * nlines: number of lines in the beamline
ndim=size(DD(1),1);
nlines=size(beamline,1); % number of lines in beamline
nmat=sum(beamline(:,2))+1; % sum over repeat-count in column 2
Racc=zeros(ndim,ndim,nmat); % matrices from start to element-end
Racc(:,:,1)=eye(ndim); % initialize first with unit matrix
spos=zeros(nmat,1); % longitudinal position
ic=1; % element counter
for line=1:nlines % loop over input elements
for seg=1:beamline(line,2) % loop over repeat-count
ic=ic+1; % next element
Rcurr=eye(2); % matrix in next element
switch beamline(line,1)
case 1 % drift
Rcurr=DD(beamline(line,3));
case 2 % thin quadrupole
Rcurr=Q(beamline(line,4));
case 5 % thick quadrupole
Rcurr=QQ(beamline(line,3),beamline(line,4));
otherwise
disp('unsupported code')
end
Racc(:,:,ic)=Rcurr*Racc(:,:,ic-1); % concatenate
spos(ic)=spos(ic-1)+beamline(line,3); % position of element
end
end
end
% Transfer matrix for a drift space |DD(L)|
% The function |DD()| receives the length |L| of a drift space and resturns
% the 2x2 transfer matrix |out| for a drift space.
function out=DD(L)
out=[1,L;0,1];
end
% Transfer matrix for a thin-lens quadrupole |Q(F)|
% The function |Q()| receives the focal length |F| as input and returns the
% 2x2 transfer matrix |out| for a thin-lens quadrupole.
function out=Q(F)
out=eye(2);
if abs(F)<1e-8, return; end % turn off, if F=0
out=[1,0;-1/F,1]; % transfer matrix
end
% Transfer matrix for a thick quadrupole |Q(F)|
% The function |QQ()| receives the length |L| and |k1| as input and returns
% the 2x2 transfer matrix |out| for a thick quadrupole.
function out=QQ(L,k1)
ksq=sqrt(abs(k1));
if abs(k1) < 1e-6
out=[1,L;0,1];
elseif k1>0
out=[cos(ksq*L),sin(ksq*L)/ksq;-ksq*sin(ksq*L),cos(ksq*L)];
else
out=[cosh(ksq*L),sinh(ksq*L)/ksq;ksq*sinh(ksq*L),cosh(ksq*L)];
end
end
% R2beta()
% The function |R2beta()| receives a transfer matrix |R| as input and returns
% the "tune" $Q=\mu/2\pi$ for the transfer matrix R, as well as the periodic Twiss
% parameters $\alpha$, $\beta$, and $\gamma$ following Equation 3.60.
function [Q,alpha,beta,gamma]=R2beta(R)
mu=acos(0.5*(R(1,1)+R(2,2)));
if (R(1,2)<0), mu=2*pi-mu; end
Q=mu/(2*pi);
beta=R(1,2)/sin(mu);
alpha=(0.5*(R(1,1)-R(2,2)))/sin(mu);
gamma=(1+alpha^2)/beta;
end
% plot_betas()
% The function |plot_betas()| receives the |beamline| description and the initial
% 2x2 beam matrix |sigma0| as input an produces a plot of the beta function. This
% function assumes that the emittance of sigma0 is 1, or $\det\sigma_0=1$, such
% that $\sigma_{11}=\beta$ is the beta function. It then uses Equation 3.43 to
% propagate $\sigma$.
function plot_betas(beamline,sigma0)
[Racc,spos]=calcmat(beamline);
betax=zeros(1,length(spos));
for k=1:length(spos)
sigma=Racc(:,:,k)*sigma0*Racc(:,:,k)';
betax(k)=sigma(1,1);
end
plot(spos,betax,'k');
xlabel(' s[m]'); ylabel('\beta_x [m]')
axis([0, max(spos), 0, 1.05*max(betax)])
end
##### SOURCE END #####
-->
</div></body></html>