-
Notifications
You must be signed in to change notification settings - Fork 0
/
DispersionSuppressor.html
104 lines (97 loc) · 81 KB
/
DispersionSuppressor.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Dispersion suppressor (Section 3.7.7)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Dispersion suppressor (Section 3.7.7)</span></h1><div class = 'S0'><span>Volker Ziemann, 211119</span></div><div class = 'S0'><span>In this example we illustrate the code that generated Figure 3.30 with the dispersion suppressor in a 90-degree FODO lattice. The suppressor consists of two FODO cells where the full-length dipole magnets are replaced by half-length dipoles.</span></div><div class = 'S0'><span>First we need to add support for the 3D calculations...</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./3D</span><span > </span><span style="color: rgb(2, 128, 9);">% contains the support functions, such as calcmat() </span></span></div></div></div><div class = 'S4'><span>...and define the regular FODO cells that are used in the arcs. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >fodo=[ </span><span style="color: rgb(2, 128, 9);">% regular FODO cell in arc</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0, 8.5511; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 5, 0.2, 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 4, 8, 0.5, 1; </span><span style="color: rgb(2, 128, 9);">% 8x0.5m = 4 m long dipole</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 5, 0.2, 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0, -4.2483;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 5, 0.2, 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 4, 8, 0.5, 1; </span><span style="color: rgb(2, 128, 9);">% 4 m long dipole</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 5, 0.2, 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > 2, 1, 0, 8.5511];</span></span></div></div></div><div class = 'S4'><span>The FODO cell in the disp[ersion suppressor is very similar, only the dipoles are shorter and the adjacent drift spaces are a bit longer in order to maintina the length of the cell. Note also that the quadrupoles excitations are the same in both types of cells. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >fodods=[ </span><span style="color: rgb(2, 128, 9);">% FODO cell in dispersion suppressor</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0, 8.5511; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0 ;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 4, 4, 0.5, 1; </span><span style="color: rgb(2, 128, 9);">% 4x0.5m = 2 m long dipole</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 2, 1, 0, -4.2483; </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0 ;</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 4, 4, 0.5, 1 ; </span><span style="color: rgb(2, 128, 9);">% 2 m long dipole</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > 2, 1, 0, 8.5511];</span></span></div></div></div><div class = 'S4'><span>Now we calculate the periodic dispersion in an arc cell, which give us the initial value </span><span style=' font-family: monospace;'>D0</span><span> for the dispersion that causes a periodic dispersion in the arcs.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >beamline=fodo; </span><span style="color: rgb(2, 128, 9);">% one arc-fodo cell</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >[Racc,spos]=calcmat(beamline); </span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >Rend=Racc(:,:,end);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >D0=periodic_dispersion(Rend);</span></span></div></div></div><div class = 'S4'><span>In order to verify that the disperison is periodic we plot it</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >D=calculate_dispersion(beamline,D0);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >plot(spos,D,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">' s[m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'D_x [m]'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >drawmag(beamline,0.2,0.2)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Dispersion in one arc cell'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="636D4625" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1173px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_24" widgetid="uniqName_333_24" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_27" widgetid="uniqName_333_27" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><div class = 'S4'><span>Now we add two dispersion suppressor cells to one arc cell and calculate all transfer matrices and the positions </span><span style=' font-family: monospace;'>spos</span><span> with </span><span style=' font-family: monospace;'>calcmat()</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >beamline=[fodo;repmat(fodods,2,1)]; </span><span style="color: rgb(2, 128, 9);">% one arc and two suppressor cells</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >[Racc,spos]=calcmat(beamline); </span></span></div></div></div><div class = 'S4'><span>Finally, we calculate the dispersion D along the beam line and plot it. For convenience, we also add the magnet lattice to show the positions of the dipoles and their respective lengths.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >D=calculate_dispersion(beamline,D0);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >figure; plot(spos,D,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); </span><span style="color: rgb(2, 128, 9);">% Fig. 3.30</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">' s[m]'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'D_x [m]'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Dispersion suppressor'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >drawmag(beamline,0.2,0.2)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >xlim([0,36.1]); </span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="0270BC01" data-scroll-top="null" data-scroll-left="null" data-testid="output_1" style="width: 1173px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_25" widgetid="uniqName_333_25" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_29" widgetid="uniqName_333_29" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><div class = 'S4'><span>Note that the dispersion is not perfectly zero at the end, because weak focussing of the dipoles which is slightly different for the full-length and half-length dipoles. This can be fixed by slightly changing the quadrupole excitations. </span></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Dispersion suppressor (Section 3.7.7)
% Volker Ziemann, 211119
%
% In this example we illustrate the code that generated Figure 3.30 with the
% dispersion suppressor in a 90-degree FODO lattice. The suppressor consists of
% two FODO cells where the full-length dipole magnets are replaced by half-length
% dipoles.
%
% First we need to add support for the 3D calculations...
clear all
addpath ./3D % contains the support functions, such as calcmat()
%%
% ...and define the regular FODO cells that are used in the arcs.
fodo=[ % regular FODO cell in arc
2, 1, 0, 8.5511;
1, 5, 0.2, 0;
4, 8, 0.5, 1; % 8x0.5m = 4 m long dipole
1, 5, 0.2, 0;
2, 1, 0, -4.2483;
1, 5, 0.2, 0;
4, 8, 0.5, 1; % 4 m long dipole
1, 5, 0.2, 0;
2, 1, 0, 8.5511];
%%
% The FODO cell in the disp[ersion suppressor is very similar, only the dipoles
% are shorter and the adjacent drift spaces are a bit longer in order to maintina
% the length of the cell. Note also that the quadrupoles excitations are the same
% in both types of cells.
fodods=[ % FODO cell in dispersion suppressor
2, 1, 0, 8.5511;
1, 10, 0.2, 0 ;
4, 4, 0.5, 1; % 4x0.5m = 2 m long dipole
1, 10, 0.2, 0;
2, 1, 0, -4.2483;
1, 10, 0.2, 0 ;
4, 4, 0.5, 1 ; % 2 m long dipole
1, 10, 0.2, 0;
2, 1, 0, 8.5511];
%%
% Now we calculate the periodic dispersion in an arc cell, which give us the
% initial value |D0| for the dispersion that causes a periodic dispersion in the
% arcs.
beamline=fodo; % one arc-fodo cell
[Racc,spos]=calcmat(beamline);
Rend=Racc(:,:,end);
D0=periodic_dispersion(Rend);
%%
% In order to verify that the disperison is periodic we plot it
D=calculate_dispersion(beamline,D0);
plot(spos,D,'k');
xlabel(' s[m]'); ylabel('D_x [m]');
drawmag(beamline,0.2,0.2)
title('Dispersion in one arc cell')
%%
% Now we add two dispersion suppressor cells to one arc cell and calculate all
% transfer matrices and the positions |spos| with |calcmat()|.
beamline=[fodo;repmat(fodods,2,1)]; % one arc and two suppressor cells
[Racc,spos]=calcmat(beamline);
%%
% Finally, we calculate the dispersion D along the beam line and plot it. For
% convenience, we also add the magnet lattice to show the positions of the dipoles
% and their respective lengths.
D=calculate_dispersion(beamline,D0);
figure; plot(spos,D,'k'); % Fig. 3.30
xlabel(' s[m]'); ylabel('D_x [m]');
title('Dispersion suppressor')
drawmag(beamline,0.2,0.2)
xlim([0,36.1]);
%%
% Note that the dispersion is not perfectly zero at the end, because weak focussing
% of the dipoles which is slightly different for the full-length and half-length
% dipoles. This can be fixed by slightly changing the quadrupole excitations.
##### SOURCE END #####
-->
</div></body></html>