-
Notifications
You must be signed in to change notification settings - Fork 0
/
DynamicApertureInBothPlanes.html
191 lines (177 loc) · 223 KB
/
DynamicApertureInBothPlanes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Dynamic aperture (Section 11.2)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { margin: 10px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 15px; font-weight: bold; text-align: left; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S9 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.S10 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 15px; font-weight: bold; text-align: left; }
.S11 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Dynamic aperture (Section 11.2)</span></h1><div class = 'S0'><span>Volker Ziemann, 211120</span></div><div class = 'S0'><span>In this example we follow particles in two transverse planes and iterate Equation 11.4 in order to find the dynamic aperture, shown in Figure 11.2, in cases where the non-linearity, a single sextupole, is well centered in the beam pipe and when it is misaligned.</span></div><div class = 'S0'><span>We determine the dynamic aperture by testing whether the particle survives </span><span style=' font-family: monospace;'>NN=1000</span><span> iterations. Then we select the horizontal and vertical tunes, </span><span style=' font-family: monospace;'>Qx</span><span> and </span><span style=' font-family: monospace;'>Qy</span><span>, respectively, and define the transfer matrix R, which is a simple rotation matrix in this case. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >NN=1000; </span><span style="color: rgb(2, 128, 9);">% maximum number of turns</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Qx=0.31; Qy=0.28;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >R1D=@(mu)[cos(mu),sin(mu);-sin(mu),cos(mu)];</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >R=[R1D(2*pi*Qx),zeros(2);zeros(2),R1D(2*pi*Qy)];</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >hold </span><span style="color: rgb(170, 4, 249);">on</span></span></div></div></div><h4 class = 'S5'><span>Sextupole not misaligned</span></h4><div class = 'S0'><span>First we consider the system without misalignment and probe the dynamic aperture along a line in the transverse </span><span texencoding="(x,y)" style="vertical-align:-5px"><img src="" width="36" height="19" /></span><span> space defined by </span><span texencoding="x=r \cos\phi" style="vertical-align:-5px"><img src="" width="71" height="18" /></span><span> and </span><span texencoding="y=r\sin\phi" style="vertical-align:-5px"><img src="" width="68.5" height="18" /></span><span>. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >phi=0:pi/100:pi </span><span style="color: rgb(2, 128, 9);">% loop over angles phi</span></span></div></div></div><div class = 'S7'><span>We start by choosing </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">r</span><span> very large and then iteratively increase it by </span><span texencoding="dr=r/2" style="vertical-align:-5px"><img src="" width="57.5" height="19" /></span><span> depending on whether the particle with starting coordinates </span><span texencoding="x_0=r\cos\phi" style="vertical-align:-6px"><img src="" width="75" height="20" /></span><span> and </span><span texencoding="y_0=r\sin\phi" style="vertical-align:-6px"><img src="" width="72.5" height="20" /></span><span> survived NN turns or not. We repeat this procedure by halving the size of the interval </span><span style=' font-family: monospace;'>nmax=12</span><span> times. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > nmax=12; dr=10; r=dr;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">while </span><span >(nmax) </span><span style="color: rgb(2, 128, 9);">% scan radially</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > dr=0.5*dr;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > x0=r*cos(phi); y0=r*sin(phi); </span><span style="color: rgb(2, 128, 9);">% new starting coordinates</span></span></div></div></div><div class = 'S7'><span>The function </span><span style=' font-family: monospace;'>survived_turns()</span><span>, defined in the Appendix, interates Equation 11.4 for a maximum on </span><span style=' font-family: monospace;'>NN</span><span> turns and returns the maximum number of turns that the particle survived.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(survived_turns(NN,R,x0,y0,0,0)==NN), r=r+dr; </span><span style="color: rgb(14, 0, 255);">else</span><span >, r=r-dr; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > nmax=nmax-1;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S7'><span>The value of </span><span texencoding="(x_0,y_0)" style="vertical-align:-6px"><img src="" width="44.5" height="20" /></span><span> thus determined show the largest starting coordinates along a line, defned by the angle </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">ϕ</span><span>for which a particles survives NN turns. We show this point by a black asterisk in transverse </span><span texencoding="(x,y)" style="vertical-align:-5px"><img src="" width="36" height="19" /></span><span> space.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > plot(x0,y0,</span><span style="color: rgb(170, 4, 249);">'k*'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >ylim([0,0.52]); xlim([-0.39,0.52]) </span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="CEFB4BB5" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1327px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_105" widgetid="uniqName_333_105" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_107" widgetid="uniqName_333_107" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><h4 class = 'S10'><span>Sextupole misaligned by dx=-0.05</span></h4><div class = 'S0'><span>Now we repat the same procedure, but horizontally displace the sextupole by </span><span style=' font-family: monospace;'>dx=-0.05</span><span>, which we pass as an argument to the function survived_turns(). In this way we find the dynamic aperture for the configuration with the misaligned sextupole, which plot as a blue plus sign. We find that the dynamic aperture, which defines the boundary between particle trajectories that are stable and those that are unstable, has become smaller.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >phi=0:pi/100:pi </span><span style="color: rgb(2, 128, 9);">% loop over angles phi</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > nmax=12; dr=10; r=dr;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">while </span><span >(nmax) </span><span style="color: rgb(2, 128, 9);">% scan radially</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > dr=0.5*dr;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x0=r*cos(phi); y0=r*sin(phi);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(survived_turns(NN,R,x0,y0,-0.05,0)==NN), r=r+dr; </span><span style="color: rgb(14, 0, 255);">else</span><span >, r=r-dr; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > nmax=nmax-1;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > plot(x0,y0,</span><span style="color: rgb(170, 4, 249);">'b+'</span><span >);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="AD617577" data-scroll-top="null" data-scroll-left="null" data-testid="output_1" style="width: 1327px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_108" widgetid="uniqName_333_108" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_110" widgetid="uniqName_333_110" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><h4 class = 'S10'><span>Sextupole misaligned by dx=-0.1</span></h4><div class = 'S0'><span>And in a third pass we increase the misalignement to </span><span style=' font-family: monospace;'>dx=-0.1</span><span>, repeat the procedure, and plot the dynamic aperture as red crosses. We observe that it has become even smaller.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >phi=0:pi/100:pi </span><span style="color: rgb(2, 128, 9);">% dx=-0.1, dy=0</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > nmax=12; dr=10; r=dr;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">while </span><span >(nmax)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > dr=0.5*dr;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x0=r*cos(phi); y0=r*sin(phi);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(survived_turns(NN,R,x0,y0,-0.1,0)==NN), r=r+dr; </span><span style="color: rgb(14, 0, 255);">else</span><span >, r=r-dr; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > nmax=nmax-1;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > plot(x0,y0,</span><span style="color: rgb(170, 4, 249);">'rx'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S7'><span>After the three dynamic apertures for </span><span style=' font-family: monospace;'>dx=0,-0.05</span><span>, and</span><span style=' font-family: monospace;'> -0.1</span><span> are displayed, we annotate the axes.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >plot([0,0.4],[0,0.4],</span><span style="color: rgb(170, 4, 249);">'k:'</span><span >,</span><span style="color: rgb(170, 4, 249);">'LineWidth'</span><span >,2)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'$\hat x$'</span><span >,</span><span style="color: rgb(170, 4, 249);">'interpreter'</span><span >,</span><span style="color: rgb(170, 4, 249);">'latex'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ylabel(</span><span style="color: rgb(170, 4, 249);">'$\hat y$'</span><span >,</span><span style="color: rgb(170, 4, 249);">'interpreter'</span><span >,</span><span style="color: rgb(170, 4, 249);">'latex'</span><span >);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >set(gca,</span><span style="color: rgb(170, 4, 249);">'FontSize'</span><span >,16);</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="DD44DF69" data-scroll-top="null" data-scroll-left="null" data-testid="output_2" style="width: 1327px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_111" widgetid="uniqName_333_111" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_113" widgetid="uniqName_333_113" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><h4 class = 'S10'><span>Survived turns along </span><span texencoding="\phi=45^o" style="vertical-align:-6px"><img src="" width="65.5" height="25" /></span></h4><div class = 'S0'><span>Now we want to determine the number of turns that a particle survives as a function of its starting coordinates located on a line with coordinates </span><span texencoding="x_0=r\cos\phi" style="vertical-align:-6px"><img src="" width="75" height="20" /></span><span> and </span><span texencoding="y_0=r\sin\phi" style="vertical-align:-6px"><img src="" width="72.5" height="20" /></span><span> where </span><span texencoding="\phi=45^o" style="vertical-align:-5px"><img src="" width="52" height="19" /></span><span>. The starting positions are indicated on the previous plot by the diagonal dotted line. Here we therefore define the angle </span><span style=' font-family: monospace;'>phi</span><span> and the starting values for</span><span style=' font-family: monospace;'> r</span><span> and allocate an array </span><span style=' font-family: monospace;'>turns</span><span> in which we store the survived turns for each starting coordinate. We do so for the same misalignments </span><span style=' font-family: monospace;'>dx</span><span> considered above.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >phi=45*pi/180;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >r=2:-0.0001:0.1; </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >turns=zeros(3,length(r));</span></span></div></div></div><div class = 'S7'><span>Now we loop over the radial positions r, define starting coordinates x0 and y0 and use the function survived_turns() to store the found value in the array turns.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:length(r)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x0=r(k)*cos(phi); y0=r(k)*sin(phi);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > turns(1,k)=survived_turns(NN,R,x0,y0,0,0); </span><span style="color: rgb(2, 128, 9);">% dx=0</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > turns(2,k)=survived_turns(NN,R,x0,y0,-0.05,0); </span><span style="color: rgb(2, 128, 9);">% dx=-0.05</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > turns(3,k)=survived_turns(NN,R,x0,y0,-0.1,0); </span><span style="color: rgb(2, 128, 9);">% dx=-0.1</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S7'><span>Once the loop completes, we open a new figure, plot the number of survived turns for the three cases on double-logarithmic scales, and annotate the axes. Note that the radial coordinate </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">r</span><span> where the respective curves start to deviate from </span><span texencoding="10^3" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> correspond to the intersection of the dotted black line on the previous figure with the three dynamic apertures.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >figure(2)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >loglog(r,turns(1,:),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,r,turns(2,:),</span><span style="color: rgb(170, 4, 249);">'b--'</span><span >,r,turns(3,:),</span><span style="color: rgb(170, 4, 249);">'r-.'</span><span >,</span><span style="color: rgb(170, 4, 249);">'LineWidth'</span><span >,2)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >axis([0.1,2,2,1700])</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >legend(</span><span style="color: rgb(170, 4, 249);">'d_x = 0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'d_x = -0.05'</span><span >,</span><span style="color: rgb(170, 4, 249);">'d_x = -0.1'</span><span >)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'Starting position r'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'Survived turns'</span><span >)</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="8D2D6837" data-scroll-top="null" data-scroll-left="null" data-testid="output_3" style="width: 1327px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_114" widgetid="uniqName_333_114" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_116" widgetid="uniqName_333_116" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><div class = 'S7'><span>Note how fast the survived number of turns drops once the dynamic aperture is exceeded.</span></div><h2 class = 'S11'><span>Appendix</span></h2><div class = 'S0'><span>The function</span><span style=' font-family: monospace;'> survived_turns()</span><span> receives the maximum number of turns to probe </span><span style=' font-family: monospace;'>N</span><span>, the transfer matrix </span><span style=' font-family: monospace;'>R</span><span>, the starting coordinates </span><span style=' font-family: monospace;'>x0</span><span> and </span><span style=' font-family: monospace;'>y0</span><span>, as well as the misalignments </span><span style=' font-family: monospace;'>dx</span><span> and </span><span style=' font-family: monospace;'>dy</span><span> of the sextupole as input and returns the survived number of turns as</span><span style=' font-family: monospace;'> out</span><span>. Inside the function the starting coordinates and the default return value </span><span style=' font-family: monospace;'>out</span><span> are initialized . Then we calculate the sextupole kick angles </span><span style=' font-family: monospace;'>thetax</span><span> and </span><span style=' font-family: monospace;'>thetay</span><span> from Equation 11.4, but with misalignment added.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >out=survived_turns(N,R,x0,y0,dx,dy)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x=[x0;0;y0;0]; out=N;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:N</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > thetax=(x(1)-dx)^2-(x(3)-dy)^2; </span><span style="color: rgb(2, 128, 9);">% sextupole kick, horizontal</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > thetay=-2*(x(1)-dx)*(x(3)-dy); </span><span style="color: rgb(2, 128, 9);">% sextupole kick, vertical </span></span></div></div></div><div class = 'S7'><span>In the next line we implement Equation 11.4 and update the particle coordinates by adding the kicks and transporting with the transfer matrix R. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span > x=R*[x(1);x(2)-thetax;x(3);x(4)-thetay];</span></span></div></div></div><div class = 'S7'><span>Finally, we test whether one coordinate exceeds a large value, here we chose 3. If that happens we set the return value </span><span style=' font-family: monospace;'>out</span><span> to the present turn number</span><span style=' font-family: monospace;'> k</span><span> and exit the function.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >((abs(x(1))>3) || (abs(x(3))>3)), out=k; </span><span style="color: rgb(14, 0, 255);">return</span><span >; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Dynamic aperture (Section 11.2)
% Volker Ziemann, 211120
%
% In this example we follow particles in two transverse planes and iterate Equation
% 11.4 in order to find the dynamic aperture, shown in Figure 11.2, in cases where
% the non-linearity, a single sextupole, is well centered in the beam pipe and
% when it is misaligned.
%
% We determine the dynamic aperture by testing whether the particle survives
% |NN=1000| iterations. Then we select the horizontal and vertical tunes, |Qx|
% and |Qy|, respectively, and define the transfer matrix R, which is a simple
% rotation matrix in this case.
clear all; close all
NN=1000; % maximum number of turns
Qx=0.31; Qy=0.28;
R1D=@(mu)[cos(mu),sin(mu);-sin(mu),cos(mu)];
R=[R1D(2*pi*Qx),zeros(2);zeros(2),R1D(2*pi*Qy)];
hold on
% Sextupole not misaligned
% First we consider the system without misalignment and probe the dynamic aperture
% along a line in the transverse $(x,y)$ space defined by $x=r \cos\phi$ and $y=r\sin\phi$.
for phi=0:pi/100:pi % loop over angles phi
%%
% We start by choosing $r$ very large and then iteratively increase it by $dr=r/2$
% depending on whether the particle with starting coordinates $x_0=r\cos\phi$
% and $y_0=r\sin\phi$ survived NN turns or not. We repeat this procedure by halving
% the size of the interval |nmax=12| times.
nmax=12; dr=10; r=dr;
while (nmax) % scan radially
dr=0.5*dr;
x0=r*cos(phi); y0=r*sin(phi); % new starting coordinates
%%
% The function |survived_turns()|, defined in the Appendix, interates Equation
% 11.4 for a maximum on |NN| turns and returns the maximum number of turns that
% the particle survived.
if (survived_turns(NN,R,x0,y0,0,0)==NN), r=r+dr; else, r=r-dr; end
nmax=nmax-1;
end
%%
% The value of $(x_0,y_0)$ thus determined show the largest starting coordinates
% along a line, defned by the angle $\phi$for which a particles survives NN turns.
% We show this point by a black asterisk in transverse $(x,y)$ space.
plot(x0,y0,'k*');
end
ylim([0,0.52]); xlim([-0.39,0.52])
% Sextupole misaligned by dx=-0.05
% Now we repat the same procedure, but horizontally displace the sextupole by
% |dx=-0.05|, which we pass as an argument to the function survived_turns(). In
% this way we find the dynamic aperture for the configuration with the misaligned
% sextupole, which plot as a blue plus sign. We find that the dynamic aperture,
% which defines the boundary between particle trajectories that are stable and
% those that are unstable, has become smaller.
for phi=0:pi/100:pi % loop over angles phi
nmax=12; dr=10; r=dr;
while (nmax) % scan radially
dr=0.5*dr;
x0=r*cos(phi); y0=r*sin(phi);
if (survived_turns(NN,R,x0,y0,-0.05,0)==NN), r=r+dr; else, r=r-dr; end
nmax=nmax-1;
end
plot(x0,y0,'b+');
end
% Sextupole misaligned by dx=-0.1
% And in a third pass we increase the misalignement to |dx=-0.1|, repeat the
% procedure, and plot the dynamic aperture as red crosses. We observe that it
% has become even smaller.
for phi=0:pi/100:pi % dx=-0.1, dy=0
nmax=12; dr=10; r=dr;
while (nmax)
dr=0.5*dr;
x0=r*cos(phi); y0=r*sin(phi);
if (survived_turns(NN,R,x0,y0,-0.1,0)==NN), r=r+dr; else, r=r-dr; end
nmax=nmax-1;
end
plot(x0,y0,'rx');
end
%%
% After the three dynamic apertures for |dx=0,-0.05|, and |-0.1| are displayed,
% we annotate the axes.
plot([0,0.4],[0,0.4],'k:','LineWidth',2)
xlabel('$\hat x$','interpreter','latex');
ylabel('$\hat y$','interpreter','latex');
set(gca,'FontSize',16);
% Survived turns along $\phi=45^o$
% Now we want to determine the number of turns that a particle survives as a
% function of its starting coordinates located on a line with coordinates $x_0=r\cos\phi$
% and $y_0=r\sin\phi$ where $\phi=45^o$. The starting positions are indicated
% on the previous plot by the diagonal dotted line. Here we therefore define
% the angle |phi| and the starting values for |r| and allocate an array |turns|
% in which we store the survived turns for each starting coordinate. We do so
% for the same misalignments |dx| considered above.
phi=45*pi/180;
r=2:-0.0001:0.1;
turns=zeros(3,length(r));
%%
% Now we loop over the radial positions r, define starting coordinates x0 and
% y0 and use the function survived_turns() to store the found value in the array
% turns.
for k=1:length(r)
x0=r(k)*cos(phi); y0=r(k)*sin(phi);
turns(1,k)=survived_turns(NN,R,x0,y0,0,0); % dx=0
turns(2,k)=survived_turns(NN,R,x0,y0,-0.05,0); % dx=-0.05
turns(3,k)=survived_turns(NN,R,x0,y0,-0.1,0); % dx=-0.1
end
%%
% Once the loop completes, we open a new figure, plot the number of survived
% turns for the three cases on double-logarithmic scales, and annotate the axes.
% Note that the radial coordinate $r$ where the respective curves start to deviate
% from $10^3$ correspond to the intersection of the dotted black line on the previous
% figure with the three dynamic apertures.
figure(2)
loglog(r,turns(1,:),'k',r,turns(2,:),'bREPLACE_WITH_DASH_DASH',r,turns(3,:),'r-.','LineWidth',2)
axis([0.1,2,2,1700])
legend('d_x = 0','d_x = -0.05','d_x = -0.1')
xlabel('Starting position r'); ylabel('Survived turns')
%%
% Note how fast the survived number of turns drops once the dynamic aperture
% is exceeded.
%% Appendix
% The function |survived_turns()| receives the maximum number of turns to probe
% |N|, the transfer matrix |R|, the starting coordinates |x0| and |y0|, as well
% as the misalignments |dx| and |dy| of the sextupole as input and returns the
% survived number of turns as |out|. Inside the function the starting coordinates
% and the default return value |out| are initialized . Then we calculate the
% sextupole kick angles |thetax| and |thetay| from Equation 11.4, but with misalignment
% added.
function out=survived_turns(N,R,x0,y0,dx,dy)
x=[x0;0;y0;0]; out=N;
for k=1:N
thetax=(x(1)-dx)^2-(x(3)-dy)^2; % sextupole kick, horizontal
thetay=-2*(x(1)-dx)*(x(3)-dy); % sextupole kick, vertical
%%
% In the next line we implement Equation 11.4 and update the particle coordinates
% by adding the kicks and transporting with the transfer matrix R.
x=R*[x(1);x(2)-thetax;x(3);x(4)-thetay];
%%
% Finally, we test whether one coordinate exceeds a large value, here we chose
% 3. If that happens we set the return value |out| to the present turn number
% |k| and exit the function.
if ((abs(x(1))>3) || (abs(x(3))>3)), out=k; return; end
end
end
##### SOURCE END #####
-->
</div></body></html>