-
Notifications
You must be signed in to change notification settings - Fork 0
/
FELoscillator.html
195 lines (187 loc) · 157 KB
/
FELoscillator.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Free-electron laser oscillator (Section 10.4)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
/* Styling that is common to warnings and errors is in diagnosticOutput.css */.embeddedOutputsErrorElement { min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsErrorElement.inlineElement {}
.embeddedOutputsErrorElement.rightPaneElement {}
/* Styling that is common to warnings and errors is in diagnosticOutput.css */.embeddedOutputsWarningElement{ min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsWarningElement.inlineElement {}
.embeddedOutputsWarningElement.rightPaneElement {}
/* Copyright 2015-2019 The MathWorks, Inc. *//* In this file, styles are not scoped to rtcContainer since they could be in the Dojo Tooltip */.diagnosticMessage-wrapper { font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px;}
.diagnosticMessage-wrapper.diagnosticMessage-warningType { color: rgb(255,100,0);}
.diagnosticMessage-wrapper.diagnosticMessage-warningType a { color: rgb(255,100,0); text-decoration: underline;}
.diagnosticMessage-wrapper.diagnosticMessage-errorType { color: rgb(230,0,0);}
.diagnosticMessage-wrapper.diagnosticMessage-errorType a { color: rgb(230,0,0); text-decoration: underline;}
.diagnosticMessage-wrapper .diagnosticMessage-messagePart,.diagnosticMessage-wrapper .diagnosticMessage-causePart { white-space: pre-wrap;}
.diagnosticMessage-wrapper .diagnosticMessage-stackPart { white-space: pre;}
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement { white-space: pre; word-wrap: initial; min-height: 18px; max-height: 250px; overflow: auto;}
.textElement,.rtcDataTipElement .textElement { padding-top: 3px;}
.embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
.inlineElement .textElement {}
.embeddedOutputsTextElement.rightPaneElement,.embeddedOutputsVariableStringElement.rightPaneElement { min-height: 16px;}
.rightPaneElement .textElement { padding-top: 2px; padding-left: 9px;}
.S8 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Free-electron laser oscillator (Section 10.4)</span></h1><div class = 'S0'><span>Volker Ziemann, 211114, CC-BY-SA-4.0</span></div><div class = 'S0'><span style=' font-weight: bold;'>Important:</span><span> requires the elliptic package from </span><a href = "https://github.com/moiseevigor/elliptic"><span>https://github.com/moiseevigor/elliptic</span></a><span> located in a subdirectory below the present one (for the fast evaluation of elliptic functions).</span></div><div class = 'S0'><span>Like the example for the SASE FEL </span><span style=' font-family: monospace;'>SaseFreeElectronLaser.mlx</span><span> is this simulation based on numericall integrating Equation 10.32. The main difference is that here we operate at low current jcurr and assume that the laser field is recirculated by mirrors and meet a fresh electron bunch on the next iteration.</span></div><div class = 'S0'><span>First we define the </span><span style=' font-family: monospace;'>mirror_losses</span><span> to be 0.01, the initial complex field </span><span style=' font-family: monospace;'>a</span><span> of the laser and the scaled current </span><span style=' font-family: monospace;'>jcurr</span><span>, which represents the peak current of the electron distribution. Moreover, we define the initial distribution of electrons in the ponderomotive field and the number N of electrons used in the simulation. From Equation 10.32 we see that the magnnitude of a, which is a0 describes the oscillation frequency </span><span texencoding="\Omega_s" style="vertical-align:-6px"><img src="" width="18" height="20" /></span><span> in the ponderomotive field.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span><span >; tic</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./elliptic</span><span > </span><span style="color: rgb(2, 128, 9);">% needed for elliptic12</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >mirror_losses=0.01; </span><span style="color: rgb(2, 128, 9);">% 0.01=1% extracted</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >a0=1e-8; phi=0; a=a0*exp(i*phi); </span><span style="color: rgb(2, 128, 9);">% initial amplitude and phase of laser</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >jcurr=1; </span><span style="color: rgb(2, 128, 9);">% scaled current from Equation 10.32</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x0=[pi/2,2.6]; dx=[2*pi,0.1]; </span><span style="color: rgb(2, 128, 9);">% center and spread of distribution</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >N=1000; </span><span style="color: rgb(2, 128, 9);">% number of particles</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >Omegas=sqrt(a0); </span><span style="color: rgb(2, 128, 9);">% synchrotron frequency</span></span></div></div></div><div class = 'S5'><span>Next we need to define some parameters needed for annotating the plots. Since the increase of the field during one pass through the undulator does not grows significantly we decide to split the simulation within on pass through the unduator into </span><span style=' font-family: monospace;'>nstep=5</span><span> steps, rather than 100, as in the SASE suimulation. </span><span style=' font-family: monospace;'>Nrep</span><span>, on th other hand, specifies the number of round-trips of the laser caused by the mirrors. On each of these trips the laser interacts with a fresh electron bunch that is provided by an accelerator. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >axis_scale=[-pi/2,3*pi/2,-17,17];</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ypos=0.95*axis_scale(3)+0.05*axis_scale(4); </span><span style="color: rgb(2, 128, 9);">% where to place text</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >zeta=-pi/2:0.01:3*pi/2; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >nstep=5; dt=1/nstep; tau=(1:nstep)/nstep; </span><span style="color: rgb(2, 128, 9);">% steps along the undulator</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >Nrep=100; </span><span style="color: rgb(2, 128, 9);">% iterations = round-trips of the laser </span></span></div></div></div><div class = 'S5'><span>Now we start iterating and first generate a fresh electron distribution that we display as a cloud of green dots.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >data=zeros(Nrep,4);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >rep=1:Nrep </span><span style="color: rgb(2, 128, 9);">% iteration over round-trips</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > hold </span><span style="color: rgb(170, 4, 249);">off</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > a00=abs(a); </span><span style="color: rgb(2, 128, 9);">% needed to caluclate the gain in this iteration</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x1(:,1)=x0(1)+(rand(N,1)-0.5)*dx(1); </span><span style="color: rgb(2, 128, 9);">% initial distribution</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x1(:,2)=x0(2)+(rand(N,1)-0.5)*dx(2); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > plot(x1(:,1),x1(:,2),</span><span style="color: rgb(170, 4, 249);">'g.'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(rep==1) dx0=dx(2); rms0=std(x1(:,2)); </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span>In the following loop over nstep iterations we follow the electron distribution as it passes through the undulator. In each step we update the electron coordinates and calculate the bunching factor </span><span style=' font-family: monospace;'>bf</span><span> that we subsequently use to update the field </span><span style=' font-family: monospace;'>a </span><span>before plotting the new electron coordinates as red dots. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > hold </span><span style="color: rgb(170, 4, 249);">on</span><span >; </span><span style="color: rgb(2, 128, 9);">% draw new image </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">for </span><span >m=1:nstep </span><span style="color: rgb(2, 128, 9);">% one pass through the undulator</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > Omegas=sqrt(abs(a)); phi=phase(a); </span><span style="color: rgb(2, 128, 9);">% needed for electron dynamics</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">parfor </span><span >k=1:N </span><span style="color: rgb(2, 128, 9);">% update electron phase space</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x1(k,:)=pendulumtracker2_phase(x1(k,:),Omegas,phi,dt);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > bf=sum(exp(-i*x1(:,1)))/size(x1,1); </span><span style="color: rgb(2, 128, 9);">% bunching factor <exp(-i*zeta)></span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > a=a-jcurr*bf*dt; </span><span style="color: rgb(2, 128, 9);">% update laser field, Eq. 10.32 </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > plot(x1(:,1),x1(:,2),</span><span style="color: rgb(170, 4, 249);">'r.'</span><span >); rms1=std(x1(:,2)); </span></span></div></div></div><div class = 'S5'><span>Now we reduce the field as a consequence of the mirror losses, plot separatrix and annotate the plot.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > a=a*(1-mirror_losses);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > title([</span><span style="color: rgb(170, 4, 249);">'Iteration '</span><span >,num2str(rep),</span><span style="color: rgb(170, 4, 249);">' of '</span><span >,num2str(Nrep)])</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > separatrix=2*Omegas*cos(0.5*(zeta-pi/2+phi));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > plot(zeta,separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,zeta,-separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi/2,0,pi/2,pi,3*pi/2],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'3\pi/2'</span><span >}) </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > axis(axis_scale); xlabel(</span><span style="color: rgb(170, 4, 249);">'\zeta'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\nu'</span><span >) </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > text(-pi/4,ypos,[</span><span style="color: rgb(170, 4, 249);">'abs(a) = '</span><span >,num2str(abs(a),3),</span><span style="color: rgb(170, 4, 249);">' '</span><span >],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,16) </span></span></div></div></div><div class = 'S5'><span>Before the next iteration, we save a number of interesting parameters for later plots to the array </span><span style=' font-family: monospace;'>data</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > data(rep,1)=abs(a);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(rep,2)=phase(a)*180/pi;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(rep,3)=(abs(a)-a00)/a00;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(rep,4)=rms1/rms0; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > pause(0.001);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(mod(rep,100)==0) toc; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="3EE38F99" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1364px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_54" widgetid="uniqName_333_54" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_57" widgetid="uniqName_333_57" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="DD230BE9" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-height="18" data-hashorizontaloverflow="false" data-testid="output_1" style="max-height: 261px; width: 1364px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="textElement" style="white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Elapsed time is 43.871730 seconds.</div></div></div></div></div><div class = 'S0'><span>Once the simulation is complete, we plot the </span><span style=' font-family: monospace;'>data</span><span>. the first plot shows the evolution of the magnitude of the field and the second plot shows its phase, whereas the third plot shows the gain per single pass through the undulator. Finally the last plot shows the increase in momentum spread of the electrons. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >figure</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >rep=1:Nrep;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,1); plot(rep,data(:,1),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,</span><span style="color: rgb(170, 4, 249);">'LineWidth'</span><span >,2); ylabel(</span><span style="color: rgb(170, 4, 249);">'abs(a)'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,2); plot(rep,data(:,2),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,</span><span style="color: rgb(170, 4, 249);">'LineWidth'</span><span >,2); ylabel(</span><span style="color: rgb(170, 4, 249);">'\phi [deg]'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,3); plot(rep,data(:,3),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,</span><span style="color: rgb(170, 4, 249);">'LineWidth'</span><span >,2); ylabel(</span><span style="color: rgb(170, 4, 249);">'Gain'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ylim([0,0.2]);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,4); plot(rep,data(:,4),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,</span><span style="color: rgb(170, 4, 249);">'LineWidth'</span><span >,2); ylabel(</span><span style="color: rgb(170, 4, 249);">'\sigma/\sigma_0'</span><span >);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'Repetition'</span><span >);</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="3A695B13" data-scroll-top="null" data-scroll-left="null" data-testid="output_2" style="width: 1364px;"><div class="figureElement" style="cursor: default;"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_55" widgetid="uniqName_333_55" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_59" widgetid="uniqName_333_59" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><div class = 'S5'><span>Now feel free to play with the parameters to your heart's content!</span></div><h2 class = 'S8'><span>Appendix</span></h2><div class = 'S0'><span>The function </span><span style=' font-family: monospace;'>pendulumtracker2_phase()</span><span> integrates the equations of motion for a mathematical pendulum in terms of Jacobi elliptic functions. It is very similar to the one used in Chapter 5 (see those examples), exept this one takes the phase of the ponderomotive force </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">ϕ</span><span> into account.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >xout=pendulumtracker2_phase(x,omega,phi,dt)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x(1)=x(1)-pi/2+phi; </span><span style="color: rgb(2, 128, 9);">% adjust to new phase</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >k2=(0.5*x(2)/omega)^2+sin(0.5*x(1))^2; k=sqrt(k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)>pi) x(1)=x(1)-2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)<-pi) x(1)=x(1)+2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >s=1; </span><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)<0) s=-s; x(1)=-x(1); </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >s1=1; </span><span style="color: rgb(14, 0, 255);">if </span><span >(x(2)<0) s1=-s1; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(k>1) </span><span style="color: rgb(2, 128, 9);">% outside separatrix; check this part next</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(2, 128, 9);">% disp('outside')</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > kelf=ellipke(1/k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > trev=2*kelf/(k*omega);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > t0=mod(dt,trev);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > tmp=s1*k*omega*t0+s*elliptic12(0.5*x(1),1/k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > [sn,cn,dn]=ellipj(tmp,1/k2); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(abs(tmp) > kelf) sn=-sn; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(1)=2*asin(sn);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(2)=2*s1*omega*k*dn;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">else</span><span > </span><span style="color: rgb(2, 128, 9);">% inside separatrix</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(2, 128, 9);">%disp('inside')</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > trev=4*ellipke(k2)/omega;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > t0=mod(dt,trev);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > z0=asin(min(1,sin(0.5*x(1))/k));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > tmp=s1*omega*t0+s*elliptic12(z0,k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > [sn,cn,dn]=ellipj(tmp,k2); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(1)=2*asin(k*sn);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(2)=2*s1*omega*k*cn;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x(1)=x(1)+pi/2-phi; </span><span style="color: rgb(2, 128, 9);">% adjust phase back</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xout(1)=xout(1)+pi/2-phi;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(xout(1)>3*pi/2) xout(1)=xout(1)-2*pi; </span><span style="color: rgb(14, 0, 255);">end</span><span > </span><span style="color: rgb(2, 128, 9);">% cast in range</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(xout(1)<-pi/2) xout(1)=xout(1)+2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'><span></span></div><div class = 'S0'></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Free-electron laser oscillator (Section 10.4)
% Volker Ziemann, 211114, CC-BY-SA-4.0
%
% *Important:* requires the elliptic package from <https://github.com/moiseevigor/elliptic
% https://github.com/moiseevigor/elliptic> located in a subdirectory below the
% present one (for the fast evaluation of elliptic functions).
%
% Like the example for the SASE FEL |SaseFreeElectronLaser.mlx| is this simulation
% based on numericall integrating Equation 10.32. The main difference is that
% here we operate at low current jcurr and assume that the laser field is recirculated
% by mirrors and meet a fresh electron bunch on the next iteration.
%
% First we define the |mirror_losses| to be 0.01, the initial complex field
% |a| of the laser and the scaled current |jcurr|, which represents the peak current
% of the electron distribution. Moreover, we define the initial distribution of
% electrons in the ponderomotive field and the number N of electrons used in the
% simulation. From Equation 10.32 we see that the magnnitude of a, which is a0
% describes the oscillation frequency $\Omega_s$ in the ponderomotive field.
clear all; close all; tic
addpath ./elliptic % needed for elliptic12
mirror_losses=0.01; % 0.01=1% extracted
a0=1e-8; phi=0; a=a0*exp(i*phi); % initial amplitude and phase of laser
jcurr=1; % scaled current from Equation 10.32
x0=[pi/2,2.6]; dx=[2*pi,0.1]; % center and spread of distribution
N=1000; % number of particles
Omegas=sqrt(a0); % synchrotron frequency
%%
% Next we need to define some parameters needed for annotating the plots. Since
% the increase of the field during one pass through the undulator does not grows
% significantly we decide to split the simulation within on pass through the unduator
% into |nstep=5| steps, rather than 100, as in the SASE suimulation. |Nrep|, on
% th other hand, specifies the number of round-trips of the laser caused by the
% mirrors. On each of these trips the laser interacts with a fresh electron bunch
% that is provided by an accelerator.
axis_scale=[-pi/2,3*pi/2,-17,17];
ypos=0.95*axis_scale(3)+0.05*axis_scale(4); % where to place text
zeta=-pi/2:0.01:3*pi/2;
nstep=5; dt=1/nstep; tau=(1:nstep)/nstep; % steps along the undulator
Nrep=100; % iterations = round-trips of the laser
%%
% Now we start iterating and first generate a fresh electron distribution that
% we display as a cloud of green dots.
data=zeros(Nrep,4);
for rep=1:Nrep % iteration over round-trips
hold off
a00=abs(a); % needed to caluclate the gain in this iteration
x1(:,1)=x0(1)+(rand(N,1)-0.5)*dx(1); % initial distribution
x1(:,2)=x0(2)+(rand(N,1)-0.5)*dx(2);
plot(x1(:,1),x1(:,2),'g.')
if (rep==1) dx0=dx(2); rms0=std(x1(:,2)); end
%%
% In the following loop over nstep iterations we follow the electron distribution
% as it passes through the undulator. In each step we update the electron coordinates
% and calculate the bunching factor |bf| that we subsequently use to update the
% field |a| before plotting the new electron coordinates as red dots.
hold on; % draw new image
for m=1:nstep % one pass through the undulator
Omegas=sqrt(abs(a)); phi=phase(a); % needed for electron dynamics
parfor k=1:N % update electron phase space
x1(k,:)=pendulumtracker2_phase(x1(k,:),Omegas,phi,dt);
end
bf=sum(exp(-i*x1(:,1)))/size(x1,1); % bunching factor <exp(-i*zeta)>
a=a-jcurr*bf*dt; % update laser field, Eq. 10.32
end
plot(x1(:,1),x1(:,2),'r.'); rms1=std(x1(:,2));
%%
% Now we reduce the field as a consequence of the mirror losses, plot separatrix
% and annotate the plot.
a=a*(1-mirror_losses);
title(['Iteration ',num2str(rep),' of ',num2str(Nrep)])
separatrix=2*Omegas*cos(0.5*(zeta-pi/2+phi));
plot(zeta,separatrix,'k',zeta,-separatrix,'k');
set(gca,'xtick',[-pi/2,0,pi/2,pi,3*pi/2],'fontsize',14, ...
'xticklabels',{'-\pi/2','0','\pi/2','\pi','3\pi/2'})
axis(axis_scale); xlabel('\zeta'); ylabel('\nu')
text(-pi/4,ypos,['abs(a) = ',num2str(abs(a),3),' '],'fontsize',16)
%%
% Before the next iteration, we save a number of interesting parameters for
% later plots to the array |data|.
data(rep,1)=abs(a);
data(rep,2)=phase(a)*180/pi;
data(rep,3)=(abs(a)-a00)/a00;
data(rep,4)=rms1/rms0;
pause(0.001);
if (mod(rep,100)==0) toc; end
end
%%
% Once the simulation is complete, we plot the |data|. the first plot shows
% the evolution of the magnitude of the field and the second plot shows its phase,
% whereas the third plot shows the gain per single pass through the undulator.
% Finally the last plot shows the increase in momentum spread of the electrons.
figure
rep=1:Nrep;
subplot(4,1,1); plot(rep,data(:,1),'k','LineWidth',2); ylabel('abs(a)');
subplot(4,1,2); plot(rep,data(:,2),'k','LineWidth',2); ylabel('\phi [deg]');
subplot(4,1,3); plot(rep,data(:,3),'k','LineWidth',2); ylabel('Gain');
ylim([0,0.2]);
subplot(4,1,4); plot(rep,data(:,4),'k','LineWidth',2); ylabel('\sigma/\sigma_0');
xlabel('Repetition');
%%
% Now feel free to play with the parameters to your heart's content!
%% Appendix
% The function |pendulumtracker2_phase()| integrates the equations of motion
% for a mathematical pendulum in terms of Jacobi elliptic functions. It is very
% similar to the one used in Chapter 5 (see those examples), exept this one takes
% the phase of the ponderomotive force $\phi$ into account.
function xout=pendulumtracker2_phase(x,omega,phi,dt)
x(1)=x(1)-pi/2+phi; % adjust to new phase
k2=(0.5*x(2)/omega)^2+sin(0.5*x(1))^2; k=sqrt(k2);
if (x(1)>pi) x(1)=x(1)-2*pi; end
if (x(1)<-pi) x(1)=x(1)+2*pi; end
s=1; if (x(1)<0) s=-s; x(1)=-x(1); end
s1=1; if (x(2)<0) s1=-s1; end
if (k>1) % outside separatrix; check this part next
% disp('outside')
kelf=ellipke(1/k2);
trev=2*kelf/(k*omega);
t0=mod(dt,trev);
tmp=s1*k*omega*t0+s*elliptic12(0.5*x(1),1/k2);
[sn,cn,dn]=ellipj(tmp,1/k2);
if (abs(tmp) > kelf) sn=-sn; end
xout(1)=2*asin(sn);
xout(2)=2*s1*omega*k*dn;
else % inside separatrix
%disp('inside')
trev=4*ellipke(k2)/omega;
t0=mod(dt,trev);
z0=asin(min(1,sin(0.5*x(1))/k));
tmp=s1*omega*t0+s*elliptic12(z0,k2);
[sn,cn,dn]=ellipj(tmp,k2);
xout(1)=2*asin(k*sn);
xout(2)=2*s1*omega*k*cn;
end
x(1)=x(1)+pi/2-phi; % adjust phase back
xout(1)=xout(1)+pi/2-phi;
if (xout(1)>3*pi/2) xout(1)=xout(1)-2*pi; end % cast in range
if (xout(1)<-pi/2) xout(1)=xout(1)+2*pi; end
end
%%
%
%
%
##### SOURCE END #####
-->
</div></body></html>