-
Notifications
You must be signed in to change notification settings - Fork 0
/
LongitudinalBunchTomography.html
206 lines (197 loc) · 241 KB
/
LongitudinalBunchTomography.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Longitudinal bunch tomography (Section 5.4)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.S2 { margin: 20px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S6 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S7 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S8 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S10 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Longitudinal bunch tomography (Section 5.4)</span></h1><div class = 'S0'><span>Volker Ziemann, 211112, CC-BY-SA-4.0</span></div><div class = 'S0'><span style=' font-weight: bold;'>Important:</span><span> requires the Statistics and Machine-learning Toolbox (for </span><span style=' font-family: monospace;'>hist3</span><span>).</span></div><div class = 'S0'><span style=' font-weight: bold;'>Important:</span><span> requires the elliptic package from </span><a href = "https://github.com/moiseevigor/elliptic"><span>https://github.com/moiseevigor/elliptic</span></a><span> located in a subdirectory below the present one (for the fast evaluation of elliptic functions).</span></div><div class = 'S0'><span>In tomographic reconstructions one recovers an approximation of a higher-dimensional distribution from projections in lower dimensions. Here we use one-dimensional projections of the longitudinal distribution--the bunch shape--and try to recover the two-dimesnional distribution.</span></div><div class = 'S0'><span>In the first part of this simulation we record twenty snapshots of a longitudinal particle distribution (in phase only) taken at times </span><span texencoding="T_s/20" style="vertical-align:-6px"><img src="" width="38" height="20" /></span><span> apart, where </span><span texencoding="T_s" style="vertical-align:-6px"><img src="" width="15" height="20" /></span><span> is the small-amplitude synchrotron period. In practice these projections could be recordings of a position-monitor sum signal on a fast oscilloscope. In the second part we back-propagate the projections, taken at time </span><span texencoding="m T_s/20" style="vertical-align:-6px"><img src="" width="48.5" height="20" /></span><span> with </span><span texencoding="m=0" style="vertical-align:-5px"><img src="" width="40" height="18" /></span><span> to </span><span texencoding="19" style="vertical-align:-5px"><img src="" width="18" height="18" /></span><span> to time </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: normal; font-weight: normal; color: rgb(0, 0, 0);">0</span><span> and superimpose them. Since we do not know the momentum distribution at the time of the recording, we simply assume that the momenta are evenly distributed, which will show up as bands in the reconstruction, but all these bands overlap in the region, where the initial particle distribution was located, which is thereby recovered.</span></div><h2 class = 'S2'><span>Making the projections</span></h2><div class = 'S0'><span>We first add the path to the elliptic functions and define some parameters of the simulation. Then we define an initial distribution with center x0 and width dx and plot it as a cloud of green dots in the upper subplot.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./elliptic</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >Omegas=0.25; Ts=2*pi/Omegas; dt=0.05*Ts;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >nstep=20; </span><span style="color: rgb(2, 128, 9);">% number of projections to record</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >xbins=-pi:pi/128:pi; </span><span style="color: rgb(2, 128, 9);">% binning of the projections</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >N=1000; </span><span style="color: rgb(2, 128, 9);">% number of particles</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >x0=[1.0,0.3]; dx=[0.3,0.1]; </span><span style="color: rgb(2, 128, 9);">% center and spread of distribution</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >x1=zeros(N,2); </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >k=1:N </span><span style="color: rgb(2, 128, 9);">% initial distribution</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > x1(k,:)=x0+(rand(1,2)-0.5).*dx; </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >subplot(2,1,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >plot(x1(:,1),x1(:,2),</span><span style="color: rgb(170, 4, 249);">'g.'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Initial distribution'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >axis([-pi,pi,-0.67,0.67]);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi,-pi/2,0,pi/2,pi],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >})</span></span></div></div></div><div class = 'S6'><span>In the lower subplot we display the projection of the initial distribution onto the phase axis, which is what a BPM sum signal would show, provided the bandwidth of the electronics is very high.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >projections=zeros(length(xbins),nstep); </span><span style="color: rgb(2, 128, 9);">% allocate space</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >projections(:,1)=hist(x1(:,1),xbins); </span><span style="color: rgb(2, 128, 9);">% save initial projection</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >subplot(2,1,2); bar(xbins,projections(:,1)); xlim([-pi,pi])</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi,-pi/2,0,pi/2,pi],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >})</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="172212BF" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1364px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S6'><span>Now we a ready to propagate the particle distribution for the time dt=Ts/20, plot the distribution in phase space in the upper subplot and use hist() to calculate the projection onto the phase axis and subsequently display it in the lower subplot.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >figure</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >m=1:nstep-1</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > subplot(2,1,1); hold </span><span style="color: rgb(170, 4, 249);">off</span><span >; </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > phi=-pi:0.01:pi; separatrix=2*Omegas*cos(0.5*phi);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > plot(phi,separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,phi,-separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > title([</span><span style="color: rgb(170, 4, 249);">'Projection '</span><span >,num2str(m+1)])</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > hold </span><span style="color: rgb(170, 4, 249);">on</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">parfor </span><span >k=1:N </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > x1(k,:)=pendulumtracker(x1(k,:),Omegas,dt);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > plot(x1(:,1),x1(:,2),</span><span style="color: rgb(170, 4, 249);">'r.'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > axis([-pi,pi,-0.67,0.67]);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi,-pi/2,0,pi/2,pi],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >})</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > projections(:,m+1)=hist(x1(:,1),xbins); </span><span style="color: rgb(2, 128, 9);">% save projection</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > subplot(2,1,2); bar(xbins,projections(:,m+1)); xlim([-pi,pi])</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi,-pi/2,0,pi/2,pi],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >})</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > pause(0.001)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="370D6DE3" data-scroll-top="null" data-scroll-left="null" data-testid="output_1" style="width: 1364px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S6'><span>Once we filled the array projections() we simply write it into a data file. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >dlmwrite(</span><span style="color: rgb(170, 4, 249);">'projections.dat'</span><span >,projections,</span><span style="color: rgb(170, 4, 249);">'\t'</span><span >);</span></span></div></div></div><div class = 'S6'><span>At this point we have recorded synthetic data from our toy system, but we could equally well save real data into a file with the same format and anlyze that in the next step.</span></div><h2 class = 'S10'><span>Analyzing the projections</span></h2><div class = 'S0'><span>In order to obviously make this part self-contained we simply clear the work space, add the path to the elliptic functions and define the same parameters as in the first part. Then we read the file with the saved projections.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./elliptic</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >Omegas=0.25; Ts=2*pi/Omegas; dt=0.05*Ts; </span><span style="color: rgb(2, 128, 9);">% must match values in</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >xbins=-pi:pi/128:pi; nbin=length(xbins); </span><span style="color: rgb(2, 128, 9);">% the above function</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >projections=dlmread(</span><span style="color: rgb(170, 4, 249);">'projections.dat'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >nstep=size(projections,2); </span></span></div></div></div><div class = 'S6'><span>At this point we make an assumption about our ignorance of the momentum distribution while recording the projections. The above-mentioned smearing out in the momentum dimension is specified by </span><span style=' font-family: monospace;'>dp</span><span>. We also allocate space for the image </span><span style=' font-family: monospace;'>im</span><span> to which we add all back-propagated projections.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >dp=-1:0.01:1; dpbin=length(dp); </span><span style="color: rgb(2, 128, 9);">% the vertical "spread"</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span >im=zeros(nbin,dpbin); </span><span style="color: rgb(2, 128, 9);">% reconstructed initial phase space image</span></span></div></div></div><div class = 'S6'><span>Now </span><span style=' font-family: monospace;'>m</span><span> loops over all the recorded projections and </span><span style=' font-family: monospace;'>kbin</span><span> over each bin of the projection. If the bin is empty, we just continue with the next one, otherwise we 'spread out' the particles in the</span><span style=' font-family: monospace;'> dp</span><span> bins with different momentum values and store these </span><span style=' font-family: monospace;'>dpbin</span><span> starting values in </span><span style=' font-family: monospace;'>x1</span><span>. Since all these starting values are independent, we can use </span><span style=' font-family: monospace;'>parfor</span><span> to use all processor-cores to back-propagate the particles to their starting time. Here </span><span style=' font-family: monospace;'>hist3() </span><span>is a very efficient way to sort these positions into the array im, which provides a continuously improving approximation of the initial distribution that we display with </span><span style=' font-family: monospace;'>contourf()</span><span> and annotate the axes.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >m=1:nstep</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">for </span><span >kbin=1:nbin</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >projections(kbin,m)==0, </span><span style="color: rgb(14, 0, 255);">continue</span><span >; </span><span style="color: rgb(14, 0, 255);">end</span><span >; </span><span style="color: rgb(2, 128, 9);">% abort, if empty</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > x1=[xbins(kbin)*ones(dpbin,1),dp'];</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">parfor </span><span >n=1:dpbin </span><span style="color: rgb(2, 128, 9);">% spread out "vertically"</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > x1(n,:)=pendulumtracker(x1(n,:),Omegas,-(m-1)*dt); </span><span style="color: rgb(2, 128, 9);">% back-propagate</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > im=im+hist3(x1,{xbins,dp})*projections(kbin,m); </span><span style="color: rgb(2, 128, 9);">% add to image</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > contourf(xbins,dp,im')</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi,-pi/2,0,pi/2,pi],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >})</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > title([</span><span style="color: rgb(170, 4, 249);">'Projection '</span><span >,num2str(m),</span><span style="color: rgb(170, 4, 249);">' of '</span><span >,num2str(nstep)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > pause(0.2)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="136B67AA" data-scroll-top="null" data-scroll-left="null" data-testid="output_2" style="width: 1364px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S6'><span>Now we can calculate the projections of the image im onto the respective axes and can, for example, compare the upper subplot with the initial distribution, shown at the start of the simulation by the green cloud of dots.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >figure(2); </span><span style="color: rgb(2, 128, 9);">% display the projections</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >subplot(2,1,1); plot(xbins,sum(im,2),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); xlim([-pi,pi]);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi,-pi/2,0,pi/2,pi],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >})</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S7'><span style="white-space: pre"><span >subplot(2,1,2); plot(dp,sum(im,1),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >)</span></span></div><div class = 'S8'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="98387178" data-scroll-top="null" data-scroll-left="null" data-testid="output_3" style="width: 1364px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><div class = 'S6'><span>Now play with the simulation by increasing the number </span><span style=' font-family: monospace;'>nstep</span><span> of recorded projections, the definition of the momentum-smearing </span><span style=' font-family: monospace;'>dp</span><span>, or any other parameter.</span></div><h2 class = 'S10'><span>Appendix </span></h2><div class = 'S0'><span>The function</span><span style=' font-family: monospace;'> pendulumtracker()</span><span> receives the phase-space coordinates </span><span style=' font-family: monospace;'>x</span><span> at the start, the small-amplitude synchrotron frequency </span><span style=' font-family: monospace;'>omega</span><span>, and the integration time </span><span style=' font-family: monospace;'>dt</span><span> as input and returns the phase-space coordinates </span><span style=' font-family: monospace;'>xout</span><span>. Internally, it integrates the equations of motion for a mathematical pendulum in closed form using Jacobi elliptic functions. This is much faster than numerically integration, expecially for extremely large times, such as thousands or even millions of synchrotron periods. The coding closely follows Section 5.4, especially Equations 5.50 to 5.54. Here we use the elliptic functions from </span><a href = "https://github.com/moiseevigor/elliptic"><span>https://github.com/moiseevigor/elliptic</span></a><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >xout=pendulumtracker(x,omega,dt)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >k2=(0.5*x(2)/omega)^2+sin(0.5*x(1))^2; k=sqrt(k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)>pi) x(1)=x(1)-2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)<-pi) x(1)=x(1)+2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >s=1; </span><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)<0) s=-s; x(1)=-x(1); </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >s1=1; </span><span style="color: rgb(14, 0, 255);">if </span><span >(x(2)<0) s1=-s1; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(k>1) </span><span style="color: rgb(2, 128, 9);">% outside separatrix</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > kelf=ellipke(1/k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > trev=2*kelf/(k*omega);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > t0=mod(dt,trev);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > tmp=s1*k*omega*t0+s*elliptic12(0.5*x(1),1/k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > [sn,cn,dn]=ellipj(tmp,1/k2); </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(abs(tmp) > kelf) sn=-sn; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > xout(1)=2*asin(sn);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > xout(2)=2*s1*omega*k*dn;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">else</span><span > </span><span style="color: rgb(2, 128, 9);">% inside separatrix</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > trev=4*ellipke(k2)/omega;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > t0=mod(dt,trev);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > z0=asin(min(1,sin(0.5*x(1))/k));</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > tmp=s1*omega*t0+s*elliptic12(z0,k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > [sn,cn,dn]=ellipj(tmp,k2); </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > xout(1)=2*asin(k*sn);</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > xout(2)=2*s1*omega*k*cn;</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Longitudinal bunch tomography (Section 5.4)
% Volker Ziemann, 211112, CC-BY-SA-4.0
%
% *Important:* requires the Statistics and Machine-learning Toolbox (for |hist3|).
%
% *Important:* requires the elliptic package from <https://github.com/moiseevigor/elliptic
% https://github.com/moiseevigor/elliptic> located in a subdirectory below the
% present one (for the fast evaluation of elliptic functions).
%
% In tomographic reconstructions one recovers an approximation of a higher-dimensional
% distribution from projections in lower dimensions. Here we use one-dimensional
% projections of the longitudinal distributionREPLACE_WITH_DASH_DASHthe bunch shapeREPLACE_WITH_DASH_DASHand try to recover
% the two-dimesnional distribution.
%
% In the first part of this simulation we record twenty snapshots of a longitudinal
% particle distribution (in phase only) taken at times $T_s/20$ apart, where $T_s$
% is the small-amplitude synchrotron period. In practice these projections could
% be recordings of a position-monitor sum signal on a fast oscilloscope. In the
% second part we back-propagate the projections, taken at time $m T_s/20$ with
% $m=0$ to $19$ to time $0$ and superimpose them. Since we do not know the momentum
% distribution at the time of the recording, we simply assume that the momenta
% are evenly distributed, which will show up as bands in the reconstruction, but
% all these bands overlap in the region, where the initial particle distribution
% was located, which is thereby recovered.
%% Making the projections
% We first add the path to the elliptic functions and define some parameters
% of the simulation. Then we define an initial distribution with center x0 and
% width dx and plot it as a cloud of green dots in the upper subplot.
clear all; close all
addpath ./elliptic
Omegas=0.25; Ts=2*pi/Omegas; dt=0.05*Ts;
nstep=20; % number of projections to record
xbins=-pi:pi/128:pi; % binning of the projections
N=1000; % number of particles
x0=[1.0,0.3]; dx=[0.3,0.1]; % center and spread of distribution
x1=zeros(N,2);
for k=1:N % initial distribution
x1(k,:)=x0+(rand(1,2)-0.5).*dx;
end
subplot(2,1,1);
plot(x1(:,1),x1(:,2),'g.')
title('Initial distribution')
axis([-pi,pi,-0.67,0.67]);
set(gca,'xtick',[-pi,-pi/2,0,pi/2,pi],'fontsize',14, ...
'xticklabels',{'-\pi','-\pi/2','0','\pi/2','\pi'})
%%
% In the lower subplot we display the projection of the initial distribution
% onto the phase axis, which is what a BPM sum signal would show, provided the
% bandwidth of the electronics is very high.
projections=zeros(length(xbins),nstep); % allocate space
projections(:,1)=hist(x1(:,1),xbins); % save initial projection
subplot(2,1,2); bar(xbins,projections(:,1)); xlim([-pi,pi])
set(gca,'xtick',[-pi,-pi/2,0,pi/2,pi],'fontsize',14, ...
'xticklabels',{'-\pi','-\pi/2','0','\pi/2','\pi'})
%%
% Now we a ready to propagate the particle distribution for the time dt=Ts/20,
% plot the distribution in phase space in the upper subplot and use hist() to
% calculate the projection onto the phase axis and subsequently display it in
% the lower subplot.
figure
for m=1:nstep-1
subplot(2,1,1); hold off;
phi=-pi:0.01:pi; separatrix=2*Omegas*cos(0.5*phi);
plot(phi,separatrix,'k',phi,-separatrix,'k');
title(['Projection ',num2str(m+1)])
hold on
parfor k=1:N
x1(k,:)=pendulumtracker(x1(k,:),Omegas,dt);
end
plot(x1(:,1),x1(:,2),'r.')
axis([-pi,pi,-0.67,0.67]);
set(gca,'xtick',[-pi,-pi/2,0,pi/2,pi],'fontsize',14, ...
'xticklabels',{'-\pi','-\pi/2','0','\pi/2','\pi'})
projections(:,m+1)=hist(x1(:,1),xbins); % save projection
subplot(2,1,2); bar(xbins,projections(:,m+1)); xlim([-pi,pi])
set(gca,'xtick',[-pi,-pi/2,0,pi/2,pi],'fontsize',14, ...
'xticklabels',{'-\pi','-\pi/2','0','\pi/2','\pi'})
pause(0.001)
end
%%
% Once we filled the array projections() we simply write it into a data file.
dlmwrite('projections.dat',projections,'\t');
%%
% At this point we have recorded synthetic data from our toy system, but we
% could equally well save real data into a file with the same format and anlyze
% that in the next step.
%% Analyzing the projections
% In order to obviously make this part self-contained we simply clear the work
% space, add the path to the elliptic functions and define the same parameters
% as in the first part. Then we read the file with the saved projections.
clear all; close all
addpath ./elliptic
Omegas=0.25; Ts=2*pi/Omegas; dt=0.05*Ts; % must match values in
xbins=-pi:pi/128:pi; nbin=length(xbins); % the above function
projections=dlmread('projections.dat');
nstep=size(projections,2);
%%
% At this point we make an assumption about our ignorance of the momentum distribution
% while recording the projections. The above-mentioned smearing out in the momentum
% dimension is specified by |dp|. We also allocate space for the image |im| to
% which we add all back-propagated projections.
dp=-1:0.01:1; dpbin=length(dp); % the vertical "spread"
im=zeros(nbin,dpbin); % reconstructed initial phase space image
%%
% Now |m| loops over all the recorded projections and |kbin| over each bin of
% the projection. If the bin is empty, we just continue with the next one, otherwise
% we 'spread out' the particles in the |dp| bins with different momentum values
% and store these |dpbin| starting values in |x1|. Since all these starting values
% are independent, we can use |parfor| to use all processor-cores to back-propagate
% the particles to their starting time. Here |hist3()| is a very efficient way
% to sort these positions into the array im, which provides a continuously improving
% approximation of the initial distribution that we display with |contourf()|
% and annotate the axes.
for m=1:nstep
for kbin=1:nbin
if projections(kbin,m)==0, continue; end; % abort, if empty
x1=[xbins(kbin)*ones(dpbin,1),dp'];
parfor n=1:dpbin % spread out "vertically"
x1(n,:)=pendulumtracker(x1(n,:),Omegas,-(m-1)*dt); % back-propagate
end
im=im+hist3(x1,{xbins,dp})*projections(kbin,m); % add to image
end
contourf(xbins,dp,im')
set(gca,'xtick',[-pi,-pi/2,0,pi/2,pi],'fontsize',14, ...
'xticklabels',{'-\pi','-\pi/2','0','\pi/2','\pi'})
title(['Projection ',num2str(m),' of ',num2str(nstep)]);
pause(0.2)
end
%%
% Now we can calculate the projections of the image im onto the respective axes
% and can, for example, compare the upper subplot with the initial distribution,
% shown at the start of the simulation by the green cloud of dots.
figure(2); % display the projections
subplot(2,1,1); plot(xbins,sum(im,2),'k'); xlim([-pi,pi]);
set(gca,'xtick',[-pi,-pi/2,0,pi/2,pi],'fontsize',14, ...
'xticklabels',{'-\pi','-\pi/2','0','\pi/2','\pi'})
subplot(2,1,2); plot(dp,sum(im,1),'k')
%%
% Now play with the simulation by increasing the number |nstep| of recorded
% projections, the definition of the momentum-smearing |dp|, or any other parameter.
%% Appendix
% The function |pendulumtracker()| receives the phase-space coordinates |x|
% at the start, the small-amplitude synchrotron frequency |omega|, and the integration
% time |dt| as input and returns the phase-space coordinates |xout|. Internally,
% it integrates the equations of motion for a mathematical pendulum in closed
% form using Jacobi elliptic functions. This is much faster than numerically integration,
% expecially for extremely large times, such as thousands or even millions of
% synchrotron periods. The coding closely follows Section 5.4, especially Equations
% 5.50 to 5.54. Here we use the elliptic functions from <https://github.com/moiseevigor/elliptic
% https://github.com/moiseevigor/elliptic>.
function xout=pendulumtracker(x,omega,dt)
k2=(0.5*x(2)/omega)^2+sin(0.5*x(1))^2; k=sqrt(k2);
if (x(1)>pi) x(1)=x(1)-2*pi; end
if (x(1)<-pi) x(1)=x(1)+2*pi; end
s=1; if (x(1)<0) s=-s; x(1)=-x(1); end
s1=1; if (x(2)<0) s1=-s1; end
if (k>1) % outside separatrix
kelf=ellipke(1/k2);
trev=2*kelf/(k*omega);
t0=mod(dt,trev);
tmp=s1*k*omega*t0+s*elliptic12(0.5*x(1),1/k2);
[sn,cn,dn]=ellipj(tmp,1/k2);
if (abs(tmp) > kelf) sn=-sn; end
xout(1)=2*asin(sn);
xout(2)=2*s1*omega*k*dn;
else % inside separatrix
trev=4*ellipke(k2)/omega;
t0=mod(dt,trev);
z0=asin(min(1,sin(0.5*x(1))/k));
tmp=s1*omega*t0+s*elliptic12(z0,k2);
[sn,cn,dn]=ellipj(tmp,k2);
xout(1)=2*asin(k*sn);
xout(2)=2*s1*omega*k*cn;
end
end
##### SOURCE END #####
-->
</div></body></html>