-
Notifications
You must be signed in to change notification settings - Fork 0
/
MatchTheTunes.html
149 lines (144 loc) · 109 KB
/
MatchTheTunes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>Matching the phase advances (Section 3.6.1)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.variableValue { width: 100% !important; }
.embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement { min-height: 18px; box-sizing: border-box;}
.embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement { position: relative;}
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue { white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
.embeddedOutputsMatrixElement.inlineElement {}
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper { display: none;}
.embeddedOutputsMatrixElement.inlineElement .veTable .body { padding-top: 0 !important; max-height: 100px;}
.inlineElement .matrixElement { max-height: 300px;}
.embeddedOutputsMatrixElement.rightPaneElement {}
.rightPaneElement .matrixElement,.rtcDataTipElement .matrixElement { overflow: hidden; padding-left: 9px;}
.rightPaneElement .matrixElement { margin-bottom: -1px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.eoOutputWrapper .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer { white-space: nowrap; margin-bottom: 3px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis.hide,.eoOutputWrapper .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide { display: none;}
.embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .verticalEllipsis, .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer.hideEllipses .horizontalEllipsis { display:none;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis,.eoOutputWrapper .matrixElement .valueContainer .horizontalEllipsis { margin-bottom: -3px;}
.eoOutputWrapper .embeddedOutputsVariableMatrixElement .matrixElement .valueContainer { cursor: default !important;}
.embeddedOutputsVariableElement { white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
.variableElement {}
.embeddedOutputsVariableElement.inlineElement {}
.inlineElement .variableElement {}
.embeddedOutputsVariableElement.rightPaneElement { min-height: 16px;}
.rightPaneElement .variableElement { padding-top: 2px; padding-left: 9px;}
.variableNameElement { margin-bottom: 3px; display: inline-block;}
/* * Ellipses as base64 for HTML export. */.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis { display: inline-block; margin-top: 3px; /* base64 encoded version of images-liveeditor/HEllipsis.png */ width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");}
.matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis { margin-left: 35px; /* base64 encoded version of images-liveeditor/VEllipsis.png */ width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");}
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S10 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S11 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }
.S12 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>Matching the phase advances (Section 3.6.1)</span></h1><div class = 'S0'><span>Volker Ziemann, 211107, CC-BY-SA-4.0</span></div><div class = 'S0'><span style=' font-weight: bold;'>Important: </span><span>requires the functions for the 4D calculations, available in the </span><span style=' font-family: monospace;'>chap3/4D</span><span> subdirectory from the zip file with all MATLAB scripts. Needed for </span><span style=' font-family: monospace;'>calcmat()</span><span> and </span><span style=' font-family: monospace;'>plot_betas(). </span></div><div class = 'S0'><span>In this example we will start from the FODO cell that we used before and will find focal lengths of the two quadrupoles that will cause the horizontal pahse advace of one cell to be </span><span texencoding="60^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span> and the vertical phase advance to be </span><span texencoding="90^o" style="vertical-align:-5px"><img src="" width="23" height="19" /></span><span>. Colloquially we sat that we set the tune per cell to 1/6 and 1/4. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(2, 128, 9);">% match the tunes in a FODO cell</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./4D</span><span > </span><span style="color: rgb(2, 128, 9);">% use the 4D software</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >beamline</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >F=2.1;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >fodo=[ 1, 5, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > 2, 1, 0.0, -F; </span><span style="color: rgb(2, 128, 9);">% QD</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > 1, 10, 0.2, 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > 2, 1, 0.0, F; </span><span style="color: rgb(2, 128, 9);">% QF</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S4'><span style="white-space: pre"><span > 1, 5, 0.2, 0] </span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="0AFBF1CE" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-testid="output_0" style="width: 1364px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1334px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">fodo = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">5×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":4,"totalRows":5,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 290px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 1.0000 5.0000 0.2000 0
2.0000 1.0000 0 -2.1000
1.0000 10.0000 0.2000 0
2.0000 1.0000 0 2.1000
1.0000 5.0000 0.2000 0
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >beamline=fodo;</span></span></div></div></div><div class = 'S7'><span>Now we are ready to calculate the transfer matrices Racc, the periodic beam matrix sigma0 that we use as initial value for plotting the beta functions.</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >[Racc,spos]=calcmat(beamline); Rend=Racc(:,:,end)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="BD451E5B" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-testid="output_1" style="width: 1364px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1334px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Rend = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">4×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":4,"totalRows":4,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 290px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 1.4989 3.5465 0 0
-0.4535 -0.4059 0 0
0 0 -0.4059 3.5465
0 0 -0.4535 1.4989
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >sigma0=periodic_beammatrix(Rend,1,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >plot_betas(beamline,sigma0); </span></span></div></div><div class="inlineWrapper outputs"><div class = 'S4'><span style="white-space: pre"><span >drawmag(beamline,1,1)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="0B89BA23" data-scroll-top="null" data-scroll-left="null" data-testid="output_2" style="width: 1364px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_3" widgetid="uniqName_333_3" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_6" widgetid="uniqName_333_6" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S10'><span style="white-space: pre"><span >Q=tunes(Rend)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="0935E70C" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-testid="output_3" style="width: 1364px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1334px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Q = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">1×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":2,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 146px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.1580 0.1580
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div></div><div class = 'S7'><span>Here we use service functions to calculate the periodic beam matrix (with emittances set to 1), plotting the beta functions, drawing the magnet lattice and calculating the tunes. Note that we find the tunes to be 0.158 in both transverse planes. But we want them to be 1/6 and 1/4 instead, so we define a chisq function (see below) that varies the focal lengths of the quads and returns the squared difference between the desired and the actually acheived tunes. We then pass this function</span><span style=' font-family: monospace;'> chisq_tunes()</span><span> to</span><span style=' font-family: monospace;'> fminsearch() </span><span>to find the new focal lengths.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >f0=[2,-2]; </span><span style="color: rgb(2, 128, 9);">% starting guess</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S4'><span style="white-space: pre"><span >[f,fval]=fminsearch(@chisq_tunes,f0)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="03C53446" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-testid="output_4" style="width: 1364px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1334px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">f = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">1×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":2,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 146px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 1.8081 -1.4748
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div><div class='variableElement' style='font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px; '>fval = 4.7549e-11</div></div></div></div><div class = 'S7'><span>Once we have the quad settings, we update all transfer matrices, calculate the periodic beam matrix, open a new figure and plot the beta functions and a the postions of the magnets with </span><span style=' font-family: monospace;'>drawmag()</span><span>. Finally we calculate the tunes and verify that they are indeed 0.1666 and 0.25 and then write the beamline description with the new quad settings to a file called </span><span style=' font-family: monospace;'>fodo6090.bl.</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >[Racc,spos]=calcmat(beamline); Rend=Racc(:,:,end)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="C516B960" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-testid="output_6" style="width: 1364px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1334px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Rend = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">4×4</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":4,"totalRows":4,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 290px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> -0.7312 3.6250 0 0
-0.6250 1.7311 0 0
0 0 1.2311 2.8750
0 0 -0.8750 -1.2311
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >sigma0=periodic_beammatrix(Rend,1,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >figure</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >plot_betas(beamline,sigma0); </span></span></div></div><div class="inlineWrapper outputs"><div class = 'S4'><span style="white-space: pre"><span >drawmag(beamline,1,1)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="C99BA33B" data-scroll-top="null" data-scroll-left="null" data-testid="output_7" style="width: 1364px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_4" widgetid="uniqName_333_4" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_8" widgetid="uniqName_333_8" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S10'><span style="white-space: pre"><span >Q=tunes(Rend)</span></span></div><div class = 'S5'><div class="inlineElement eoOutputWrapper embeddedOutputsVariableMatrixElement" uid="94ED474F" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-testid="output_8" style="width: 1364px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1334px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Q = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: normal; color: rgb(179, 179, 179); font-size: 12px;">1×2</span></div></div><div class="valueContainer" data-layout="{"columnWidth":72,"totalColumns":2,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 146px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.1667 0.2500
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre"><span >dlmwrite(</span><span style="color: rgb(170, 4, 249);">'fodo6090.bl'</span><span >,beamline,</span><span style="color: rgb(170, 4, 249);">'\t'</span><span >)</span></span></div></div></div><div class = 'S7'><span>If we want to work with these cells further, we simply load </span><span style=' font-family: monospace;'>fodo6090.bl </span><span>with</span><span style=' font-family: monospace;'> dlmread()</span><span> and use it as the starting point for further explorations.</span></div><h2 class = 'S11'><span>chisq_tunes()</span></h2><div class = 'S0'><span>This following function</span><span style=' font-family: monospace;'> chisq_tunes() </span><span>receives the focal lenths as input, and returns the squared difference between the desired and the actually calculated tunes. Inside the function first the focal lenths in the fourth column of entry 2 and 4 of the beamline are updated, then the tranbsfer matrices are updated and the tunes are extracted, before the difference to the desired values is determined.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >chisq=chisq_tunes(x)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">global </span><span >beamline </span><span style="color: rgb(2, 128, 9);">% need info about the beamline</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >beamline(2,4)=x(1); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >beamline(4,4)=x(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >[Racc,spos]=calcmat(beamline);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >Rturn=Racc(:,:,end); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >[Qx,alpha0x,beta0x,gamma0x]=R2beta(Rturn(1:2,1:2));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >[Qy,alpha0y,beta0y,gamma0y]=R2beta(Rturn(3:4,3:4));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >chisq=(Qx-1/6)^2+(Qy-0.25)^2; </span><span style="color: rgb(2, 128, 9);">% desired tunes</span></span></div></div><div class="inlineWrapper"><div class = 'S12'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% Matching the phase advances (Section 3.6.1)
% Volker Ziemann, 211107, CC-BY-SA-4.0
%
% *Important:* requires the functions for the 4D calculations, available in
% the |chap3/4D| subdirectory from the zip file with all MATLAB scripts. Needed
% for |calcmat()| and |plot_betas().|
%
% In this example we will start from the FODO cell that we used before and
% will find focal lengths of the two quadrupoles that will cause the horizontal
% pahse advace of one cell to be $60^o$ and the vertical phase advance to be $90^o$.
% Colloquially we sat that we set the tune per cell to 1/6 and 1/4.
% match the tunes in a FODO cell
clear all; close all
addpath ./4D % use the 4D software
global beamline
F=2.1;
fodo=[ 1, 5, 0.2, 0;
2, 1, 0.0, -F; % QD
1, 10, 0.2, 0;
2, 1, 0.0, F; % QF
1, 5, 0.2, 0]
beamline=fodo;
%%
% Now we are ready to calculate the transfer matrices Racc, the periodic beam
% matrix sigma0 that we use as initial value for plotting the beta functions.
[Racc,spos]=calcmat(beamline); Rend=Racc(:,:,end)
sigma0=periodic_beammatrix(Rend,1,1);
plot_betas(beamline,sigma0);
drawmag(beamline,1,1)
Q=tunes(Rend)
%%
% Here we use service functions to calculate the periodic beam matrix (with
% emittances set to 1), plotting the beta functions, drawing the magnet lattice
% and calculating the tunes. Note that we find the tunes to be 0.158 in both transverse
% planes. But we want them to be 1/6 and 1/4 instead, so we define a chisq function
% (see below) that varies the focal lengths of the quads and returns the squared
% difference between the desired and the actually acheived tunes. We then pass
% this function |chisq_tunes()| to |fminsearch()| to find the new focal lengths.
f0=[2,-2]; % starting guess
[f,fval]=fminsearch(@chisq_tunes,f0)
%%
% Once we have the quad settings, we update all transfer matrices, calculate
% the periodic beam matrix, open a new figure and plot the beta functions and
% a the postions of the magnets with |drawmag()|. Finally we calculate the tunes
% and verify that they are indeed 0.1666 and 0.25 and then write the beamline
% description with the new quad settings to a file called |fodo6090.bl.|
[Racc,spos]=calcmat(beamline); Rend=Racc(:,:,end)
sigma0=periodic_beammatrix(Rend,1,1);
figure
plot_betas(beamline,sigma0);
drawmag(beamline,1,1)
Q=tunes(Rend)
dlmwrite('fodo6090.bl',beamline,'\t')
%%
% If we want to work with these cells further, we simply load |fodo6090.bl|
% with |dlmread()| and use it as the starting point for further explorations.
%% chisq_tunes()
% This following function |chisq_tunes()| receives the focal lenths as input,
% and returns the squared difference between the desired and the actually calculated
% tunes. Inside the function first the focal lenths in the fourth column of entry
% 2 and 4 of the beamline are updated, then the tranbsfer matrices are updated
% and the tunes are extracted, before the difference to the desired values is
% determined.
function chisq=chisq_tunes(x)
global beamline % need info about the beamline
beamline(2,4)=x(1);
beamline(4,4)=x(2);
[Racc,spos]=calcmat(beamline);
Rturn=Racc(:,:,end);
[Qx,alpha0x,beta0x,gamma0x]=R2beta(Rturn(1:2,1:2));
[Qy,alpha0y,beta0y,gamma0y]=R2beta(Rturn(3:4,3:4));
chisq=(Qx-1/6)^2+(Qy-0.25)^2; % desired tunes
end
##### SOURCE END #####
-->
</div></body></html>