-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSaseFreeElectronLaser.html
211 lines (201 loc) · 195 KB
/
SaseFreeElectronLaser.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2021a"><title>SASE free-electron laser (Section 10.4)</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S1 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: normal; text-align: left; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S3 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S4 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S5 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
/* Styling that is common to warnings and errors is in diagnosticOutput.css */.embeddedOutputsErrorElement { min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsErrorElement.inlineElement {}
.embeddedOutputsErrorElement.rightPaneElement {}
/* Styling that is common to warnings and errors is in diagnosticOutput.css */.embeddedOutputsWarningElement{ min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsWarningElement.inlineElement {}
.embeddedOutputsWarningElement.rightPaneElement {}
/* Copyright 2015-2019 The MathWorks, Inc. *//* In this file, styles are not scoped to rtcContainer since they could be in the Dojo Tooltip */.diagnosticMessage-wrapper { font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px;}
.diagnosticMessage-wrapper.diagnosticMessage-warningType { color: rgb(255,100,0);}
.diagnosticMessage-wrapper.diagnosticMessage-warningType a { color: rgb(255,100,0); text-decoration: underline;}
.diagnosticMessage-wrapper.diagnosticMessage-errorType { color: rgb(230,0,0);}
.diagnosticMessage-wrapper.diagnosticMessage-errorType a { color: rgb(230,0,0); text-decoration: underline;}
.diagnosticMessage-wrapper .diagnosticMessage-messagePart,.diagnosticMessage-wrapper .diagnosticMessage-causePart { white-space: pre-wrap;}
.diagnosticMessage-wrapper .diagnosticMessage-stackPart { white-space: pre;}
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement { white-space: pre; word-wrap: initial; min-height: 18px; max-height: 250px; overflow: auto;}
.textElement,.rtcDataTipElement .textElement { padding-top: 3px;}
.embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
.inlineElement .textElement {}
.embeddedOutputsTextElement.rightPaneElement,.embeddedOutputsVariableStringElement.rightPaneElement { min-height: 16px;}
.rightPaneElement .textElement { padding-top: 2px; padding-left: 9px;}
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S10 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }</style></head><body><div class = rtcContent><div class = 'S0'><span>Companion software for "Volker Ziemann, </span><span style=' font-style: italic;'>Hands-on Accelerator physics using MATLAB, CRCPress, 2019</span><span>" (https://www.crcpress.com/9781138589940)</span></div><h1 class = 'S1'><span>SASE free-electron laser (Section 10.4)</span></h1><div class = 'S0'><span>Volker Ziemann, 211114, CC-BY-SA-4.0</span></div><div class = 'S0'><span style=' font-weight: bold;'>Important:</span><span> requires the elliptic package from </span><a href = "https://github.com/moiseevigor/elliptic"><span>https://github.com/moiseevigor/elliptic</span></a><span> located in a subdirectory below the present one (for the fast evaluation of elliptic functions).</span></div><div class = 'S0'><span>In this simulation we numerically integrate Equation 10.32, which describes the evolution of the amplitude and phase of the electro-magnetic wave (the laser field) and an ensemble of electrons that move in the ponderomotive field of the laser. </span></div><div class = 'S0'><span>First we define the initial complex field </span><span style=' font-family: monospace;'>a</span><span> of the laser and the scaled current jcurr, which represents the peak current of the electron distribution. Moreover, we define the initial distribution of electrons in the ponderomotive field and the number N of electrons used in the simulation. From Equation 10.32 we see that the magnnitude of a, which is a0 describes the oscillation frequency </span><span texencoding="\Omega_s" style="vertical-align:-6px"><img src="" width="18" height="20" /></span><span> in the ponderomotive field.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >clear </span><span style="color: rgb(170, 4, 249);">all</span><span >; close </span><span style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >addpath </span><span style="color: rgb(170, 4, 249);">./elliptic</span><span > </span><span style="color: rgb(2, 128, 9);">% needed for elliptic12</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >a0=1e-8; phi=0; a=a0*exp(i*phi); </span><span style="color: rgb(2, 128, 9);">% initial amplitude and phase of laser</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >jcurr=200; </span><span style="color: rgb(2, 128, 9);">% scaled current from Equation 10.32</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x0=[pi/2,0]; dx=[2*pi,0.3]; </span><span style="color: rgb(2, 128, 9);">% center and spread of distribution</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >N=1000; </span><span style="color: rgb(2, 128, 9);">% number of particles</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >Omegas=sqrt(a0); </span><span style="color: rgb(2, 128, 9);">% synchrotron frequency</span></span></div></div></div><div class = 'S5'><span>Now we can plot the initial electron distribution as a cloud of green dots . We see that it is evenly distributed in phase and has a small vertical extent in the variable </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">ν</span><span> which corresponds to the difference of electron energy with respect to the resonance energy of the FEL.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >axis_scale=[-pi/2,3*pi/2,-17,17];</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >ypos=0.95*axis_scale(3)+0.05*axis_scale(4); </span><span style="color: rgb(2, 128, 9);">% where to place text</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >zeta=-pi/2:0.01:3*pi/2; separatrix=2*Omegas*cos(0.5*(zeta-pi/2+phi));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >hold </span><span style="color: rgb(170, 4, 249);">off</span><span >; plot(zeta,separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,zeta,-separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >axis(axis_scale); xlabel(</span><span style="color: rgb(170, 4, 249);">'\zeta'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\nu'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi/2,0,pi/2,pi,3*pi/2],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'3\pi/2'</span><span >})</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >hold </span><span style="color: rgb(170, 4, 249);">on</span><span >;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x1(:,1)=x0(1)+(rand(N,1)-0.5)*dx(1); </span><span style="color: rgb(2, 128, 9);">% initial distribution</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x1(:,2)=x0(2)+(rand(N,1)-0.5)*dx(2); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >plot(x1(:,1),x1(:,2),</span><span style="color: rgb(170, 4, 249);">'g.'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >title(</span><span style="color: rgb(170, 4, 249);">'Initial Distribution'</span><span >)</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span >pause(0.01)</span></span></div></div></div><div class = 'S5'><span>After subdividing the time for the transit through the FEL into </span><span style=' font-family: monospace;'>nstep=100</span><span> time steps, we are ready to start iterating</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >nstep=100; dt=1/nstep; tau=(1:nstep)/nstep; </span><span style="color: rgb(2, 128, 9);">% steps along the undulator</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >tic; data=zeros(nstep,4); </span><span style="color: rgb(2, 128, 9);">% storage for plot data</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">for </span><span >m=1:nstep</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > hold </span><span style="color: rgb(170, 4, 249);">off</span><span >; </span><span style="color: rgb(2, 128, 9);">% draw new image</span></span></div></div></div><div class = 'S5'><span>As a first step we calculate </span><span texencoding="\Omega_s" style="vertical-align:-6px"><img src="" width="18" height="20" /></span><span> and phase </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">ϕ</span><span> from the amplitude of the field, which enables us to plot the separatrix, whose height is thus related to the field amplitude and phase.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > Omegas=sqrt(abs(a)); phi=phase(a); </span><span style="color: rgb(2, 128, 9);">% needed for electron dynamics</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > separatrix=2*Omegas*cos(0.5*(zeta-pi/2+phi));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > plot(zeta,separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >,zeta,-separatrix,</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > set(gca,</span><span style="color: rgb(170, 4, 249);">'xtick'</span><span >,[-pi/2,0,pi/2,pi,3*pi/2],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,14, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(170, 4, 249);">'xticklabels'</span><span >,{</span><span style="color: rgb(170, 4, 249);">'-\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'0'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi/2'</span><span >,</span><span style="color: rgb(170, 4, 249);">'\pi'</span><span >,</span><span style="color: rgb(170, 4, 249);">'3\pi/2'</span><span >}) </span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > axis(axis_scale); xlabel(</span><span style="color: rgb(170, 4, 249);">'\zeta'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'\nu'</span><span >)</span></span></div></div></div><div class = 'S5'><span>Now we update the positions of all electrons in their phase space, which is governed by the pendulum equation and uses pendulumtracker2_phase(), which is a slightly modified version of the equivalent function from Chapter 5, but this one is centered aroudn </span><span texencoding="\pi/2" style="vertical-align:-5px"><img src="" width="27" height="19" /></span><span> insetead of zero. See the code below. Once all electrons coordinates are updated, we plot them as red dots superimposed to the separatrix. Note that all electrons are independent and we use parfor as a simple ay to utilize all processor cores.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > hold </span><span style="color: rgb(170, 4, 249);">on</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">parfor </span><span >k=1:N </span><span style="color: rgb(2, 128, 9);">% update electron phase space, use "for" or "parfor"</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > x1(k,:)=pendulumtracker2_phase(x1(k,:),Omegas,phi,dt);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > plot(x1(:,1),x1(:,2),</span><span style="color: rgb(170, 4, 249);">'r.'</span><span >); </span></span></div></div></div><div class = 'S5'><span>Now we calculate the bunching factor, which appears on the right-hand side of the equation for </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">a</span><span> in Equation 10.32 and numerically integrate that equation in order to update amplitude and phase of the laser field.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > bf=sum(exp(-i*x1(:,1)))/size(x1,1); </span><span style="color: rgb(2, 128, 9);">% bunching factor <exp(-i*zeta)></span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > a=a-jcurr*bf*dt; </span><span style="color: rgb(2, 128, 9);">% update laser field, Eq. 10.32</span></span></div></div></div><div class = 'S5'><span>Now all dynamical variables are updated for this time step and we annotate the plot and save the interesting quantities to the array </span><span style=' font-family: monospace;'>data</span><span>. The short pause at the end allows MATLAB to update the plot so we can watch the evolution in real time. Note how the seapatrix grows as the field amplitude grows and, at the same time, the phase of the separatrix shifts towards is the electrons transfer their kinetic energy to the laser field.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span > text(-1.4,ypos,[</span><span style="color: rgb(170, 4, 249);">'bf = '</span><span >,num2str(bf,</span><span style="color: rgb(170, 4, 249);">'%6.3f'</span><span >),</span><span style="color: rgb(170, 4, 249);">' '</span><span >],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,16) </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > text(pi,ypos,[</span><span style="color: rgb(170, 4, 249);">'\tau = '</span><span >,num2str(tau(m),4),</span><span style="color: rgb(170, 4, 249);">' '</span><span >],</span><span style="color: rgb(170, 4, 249);">'fontsize'</span><span >,16) </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(m,1)=abs(a);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(m,2)=phase(a)*180/pi;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(m,3)=abs(bf);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > data(m,4)=(abs(a)-a0)/a0;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > title([</span><span style="color: rgb(170, 4, 249);">' abs(a) = '</span><span >,num2str(abs(a),3),</span><span style="color: rgb(170, 4, 249);">' gain = ' </span><span >num2str(data(m,4),3)])</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > pause(0.01)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="87943469" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1364px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_45" widgetid="uniqName_333_45" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_47" widgetid="uniqName_333_47" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="629E2AB9" data-scroll-top="null" data-scroll-left="null" data-testid="output_1" style="width: 1364px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_50" widgetid="uniqName_333_50" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_53" widgetid="uniqName_333_53" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><div class = 'S5'><span>Once the simulation is complete, we calculate the theoretical exponential gain from Equation 10.33 and also from a fit to the final part of the numerically determined growth of</span><span style=' font-family: monospace;'> a</span><span>. The upper plot shows latter growth and also shows the theoretical and experimentally determined growth rate in the title.</span></div><div class="CodeBlock"><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre"><span >toc; growth_theo=0.5*sqrt(3)*(jcurr/2)^(1/3);</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="1A95E648" data-scroll-top="null" data-scroll-left="null" data-width="1334" data-height="18" data-hashorizontaloverflow="false" data-testid="output_2" style="max-height: 261px; width: 1364px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="textElement" style="white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Elapsed time is 14.680380 seconds.</div></div></div></div><div class="inlineWrapper"><div class = 'S9'><span style="white-space: pre"><span >mm=0.3*nstep:nstep; p=polyfit(tau(mm)',log(data(mm,1)),1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >growth_rate=p(1);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >figure; </span><span style="color: rgb(2, 128, 9);">% second figure with evaolution along the undulator tau=s/L</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,1); plot(tau,data(:,1),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'abs(a)'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >title([</span><span style="color: rgb(170, 4, 249);">'Growth rate [theo/exp] = '</span><span >,num2str(growth_theo,3),</span><span style="color: rgb(170, 4, 249);">' / '</span><span >, </span><span style="color: rgb(14, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span > num2str(growth_rate,3)])</span></span></div></div></div><div class = 'S5'><span>The second and third plot show the evolution of the phase </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">ϕ</span><span> and the bunching factor, whereas the fourth shows the gain </span><span texencoding="(a-a_0)/a_0" style="vertical-align:-6px"><img src="" width="71.5" height="20" /></span><span> as the simulation progresses.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span >subplot(4,1,2); plot(tau,data(:,2),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'phase(a) [deg]'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,3); plot(tau,data(:,3),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'<exp(-i\zeta)>'</span><span >);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >subplot(4,1,4); plot(tau,data(:,4),</span><span style="color: rgb(170, 4, 249);">'k'</span><span >); ylabel(</span><span style="color: rgb(170, 4, 249);">'Gain'</span><span >);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S6'><span style="white-space: pre"><span >xlabel(</span><span style="color: rgb(170, 4, 249);">'\tau = s/L_u'</span><span >)</span></span></div><div class = 'S7'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="F6849998" data-scroll-top="null" data-scroll-left="null" data-testid="output_3" style="width: 1364px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_333_51" widgetid="uniqName_333_51" style="width: 100%; height: auto;"><div class="ImageView" id="uniqName_333_55" widgetid="uniqName_333_55" style="width: 100%; height: auto;">
<canvas class="ImageView" data-dojo-attach-point="canvasViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: none;"></canvas>
<img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" style="width: 100%; height: auto; display: inline;" src="">
</div></div></div></div></div></div></div></div><h2 class = 'S10'><span>Appendix</span></h2><div class = 'S0'><span>The function pendulumtracker2_phase() integrates the equations of motion for a mathematical pendulum in terms of Jacobi elliptic functions. It is very similar to the one used in Chapter 5 (see those examples), exept this one takes the phase of the ponderomotive force </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: normal; color: rgb(0, 0, 0);">ϕ</span><span> into account.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S2'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">function </span><span >xout=pendulumtracker2_phase(x,omega,phi,dt)</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x(1)=x(1)-pi/2+phi; </span><span style="color: rgb(2, 128, 9);">% adjust to new phase</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >k2=(0.5*x(2)/omega)^2+sin(0.5*x(1))^2; k=sqrt(k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)>pi) x(1)=x(1)-2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)<-pi) x(1)=x(1)+2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >s=1; </span><span style="color: rgb(14, 0, 255);">if </span><span >(x(1)<0) s=-s; x(1)=-x(1); </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >s1=1; </span><span style="color: rgb(14, 0, 255);">if </span><span >(x(2)<0) s1=-s1; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(k>1) </span><span style="color: rgb(2, 128, 9);">% outside separatrix; check this part next</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > kelf=ellipke(1/k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > trev=2*kelf/(k*omega);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > t0=mod(dt,trev);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > tmp=s1*k*omega*t0+s*elliptic12(0.5*x(1),1/k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > [sn,cn,dn]=ellipj(tmp,1/k2); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > </span><span style="color: rgb(14, 0, 255);">if </span><span >(abs(tmp) > kelf) sn=-sn; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(1)=2*asin(sn);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(2)=2*s1*omega*k*dn;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">else</span><span > </span><span style="color: rgb(2, 128, 9);">% inside separatrix</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > trev=4*ellipke(k2)/omega;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > t0=mod(dt,trev);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > z0=asin(min(1,sin(0.5*x(1))/k));</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > tmp=s1*omega*t0+s*elliptic12(z0,k2);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > [sn,cn,dn]=ellipj(tmp,k2); </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(1)=2*asin(k*sn);</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span > xout(2)=2*s1*omega*k*cn;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >x(1)=x(1)+pi/2-phi; </span><span style="color: rgb(2, 128, 9);">% adjust phase back</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span >xout(1)=xout(1)+pi/2-phi;</span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(xout(1)>3*pi/2) xout(1)=xout(1)-2*pi; </span><span style="color: rgb(14, 0, 255);">end</span><span > </span></span></div></div><div class="inlineWrapper"><div class = 'S3'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">if </span><span >(xout(1)<-pi/2) xout(1)=xout(1)+2*pi; </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S4'><span style="white-space: pre"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><div class = 'S5'></div>
<br>
<!--
##### SOURCE BEGIN #####
%%
% Companion software for "Volker Ziemann, _Hands-on Accelerator physics using
% MATLAB, CRCPress, 2019_" (https://www.crcpress.com/9781138589940)
%% SASE free-electron laser (Section 10.4)
% Volker Ziemann, 211114, CC-BY-SA-4.0
%
% *Important:* requires the elliptic package from <https://github.com/moiseevigor/elliptic
% https://github.com/moiseevigor/elliptic> located in a subdirectory below the
% present one (for the fast evaluation of elliptic functions).
%
% In this simulation we numerically integrate Equation 10.32, which describes
% the evolution of the amplitude and phase of the electro-magnetic wave (the laser
% field) and an ensemble of electrons that move in the ponderomotive field of
% the laser.
%
% First we define the initial complex field |a| of the laser and the scaled
% current jcurr, which represents the peak current of the electron distribution.
% Moreover, we define the initial distribution of electrons in the ponderomotive
% field and the number N of electrons used in the simulation. From Equation 10.32
% we see that the magnnitude of a, which is a0 describes the oscillation frequency
% $\Omega_s$ in the ponderomotive field.
clear all; close all
addpath ./elliptic % needed for elliptic12
a0=1e-8; phi=0; a=a0*exp(i*phi); % initial amplitude and phase of laser
jcurr=200; % scaled current from Equation 10.32
x0=[pi/2,0]; dx=[2*pi,0.3]; % center and spread of distribution
N=1000; % number of particles
Omegas=sqrt(a0); % synchrotron frequency
%%
% Now we can plot the initial electron distribution as a cloud of green dots
% . We see that it is evenly distributed in phase and has a small vertical extent
% in the variable $\nu$ which corresponds to the difference of electron energy
% with respect to the resonance energy of the FEL.
axis_scale=[-pi/2,3*pi/2,-17,17];
ypos=0.95*axis_scale(3)+0.05*axis_scale(4); % where to place text
zeta=-pi/2:0.01:3*pi/2; separatrix=2*Omegas*cos(0.5*(zeta-pi/2+phi));
hold off; plot(zeta,separatrix,'k',zeta,-separatrix,'k')
axis(axis_scale); xlabel('\zeta'); ylabel('\nu')
set(gca,'xtick',[-pi/2,0,pi/2,pi,3*pi/2],'fontsize',14, ...
'xticklabels',{'-\pi/2','0','\pi/2','\pi','3\pi/2'})
hold on;
x1(:,1)=x0(1)+(rand(N,1)-0.5)*dx(1); % initial distribution
x1(:,2)=x0(2)+(rand(N,1)-0.5)*dx(2);
plot(x1(:,1),x1(:,2),'g.')
title('Initial Distribution')
pause(0.01)
%%
% After subdividing the time for the transit through the FEL into |nstep=100|
% time steps, we are ready to start iterating
nstep=100; dt=1/nstep; tau=(1:nstep)/nstep; % steps along the undulator
tic; data=zeros(nstep,4); % storage for plot data
for m=1:nstep
hold off; % draw new image
%%
% As a first step we calculate $\Omega_s$ and phase $\phi$ from the amplitude
% of the field, which enables us to plot the separatrix, whose height is thus
% related to the field amplitude and phase.
Omegas=sqrt(abs(a)); phi=phase(a); % needed for electron dynamics
separatrix=2*Omegas*cos(0.5*(zeta-pi/2+phi));
plot(zeta,separatrix,'k',zeta,-separatrix,'k');
set(gca,'xtick',[-pi/2,0,pi/2,pi,3*pi/2],'fontsize',14, ...
'xticklabels',{'-\pi/2','0','\pi/2','\pi','3\pi/2'})
axis(axis_scale); xlabel('\zeta'); ylabel('\nu')
%%
% Now we update the positions of all electrons in their phase space, which is
% governed by the pendulum equation and uses pendulumtracker2_phase(), which is
% a slightly modified version of the equivalent function from Chapter 5, but this
% one is centered aroudn $\pi/2$ insetead of zero. See the code below. Once all
% electrons coordinates are updated, we plot them as red dots superimposed to
% the separatrix. Note that all electrons are independent and we use parfor as
% a simple ay to utilize all processor cores.
hold on
parfor k=1:N % update electron phase space, use "for" or "parfor"
x1(k,:)=pendulumtracker2_phase(x1(k,:),Omegas,phi,dt);
end
plot(x1(:,1),x1(:,2),'r.');
%%
% Now we calculate the bunching factor, which appears on the right-hand side
% of the equation for $a$ in Equation 10.32 and numerically integrate that equation
% in order to update amplitude and phase of the laser field.
bf=sum(exp(-i*x1(:,1)))/size(x1,1); % bunching factor <exp(-i*zeta)>
a=a-jcurr*bf*dt; % update laser field, Eq. 10.32
%%
% Now all dynamical variables are updated for this time step and we annotate
% the plot and save the interesting quantities to the array |data|. The short
% pause at the end allows MATLAB to update the plot so we can watch the evolution
% in real time. Note how the seapatrix grows as the field amplitude grows and,
% at the same time, the phase of the separatrix shifts towards is the electrons
% transfer their kinetic energy to the laser field.
text(-1.4,ypos,['bf = ',num2str(bf,'%6.3f'),' '],'fontsize',16)
text(pi,ypos,['\tau = ',num2str(tau(m),4),' '],'fontsize',16)
data(m,1)=abs(a);
data(m,2)=phase(a)*180/pi;
data(m,3)=abs(bf);
data(m,4)=(abs(a)-a0)/a0;
title([' abs(a) = ',num2str(abs(a),3),' gain = ' num2str(data(m,4),3)])
pause(0.01)
end
%%
% Once the simulation is complete, we calculate the theoretical exponential
% gain from Equation 10.33 and also from a fit to the final part of the numerically
% determined growth of |a|. The upper plot shows latter growth and also shows
% the theoretical and experimentally determined growth rate in the title.
toc; growth_theo=0.5*sqrt(3)*(jcurr/2)^(1/3);
mm=0.3*nstep:nstep; p=polyfit(tau(mm)',log(data(mm,1)),1);
growth_rate=p(1);
figure; % second figure with evaolution along the undulator tau=s/L
subplot(4,1,1); plot(tau,data(:,1),'k'); ylabel('abs(a)');
title(['Growth rate [theo/exp] = ',num2str(growth_theo,3),' / ', ...
num2str(growth_rate,3)])
%%
% The second and third plot show the evolution of the phase $\phi$ and the bunching
% factor, whereas the fourth shows the gain $(a-a_0)/a_0$ as the simulation progresses.
subplot(4,1,2); plot(tau,data(:,2),'k'); ylabel('phase(a) [deg]');
subplot(4,1,3); plot(tau,data(:,3),'k'); ylabel('<exp(-i\zeta)>');
subplot(4,1,4); plot(tau,data(:,4),'k'); ylabel('Gain');
xlabel('\tau = s/L_u')
%% Appendix
% The function pendulumtracker2_phase() integrates the equations of motion for
% a mathematical pendulum in terms of Jacobi elliptic functions. It is very similar
% to the one used in Chapter 5 (see those examples), exept this one takes the
% phase of the ponderomotive force $\phi$ into account.
function xout=pendulumtracker2_phase(x,omega,phi,dt)
x(1)=x(1)-pi/2+phi; % adjust to new phase
k2=(0.5*x(2)/omega)^2+sin(0.5*x(1))^2; k=sqrt(k2);
if (x(1)>pi) x(1)=x(1)-2*pi; end
if (x(1)<-pi) x(1)=x(1)+2*pi; end
s=1; if (x(1)<0) s=-s; x(1)=-x(1); end
s1=1; if (x(2)<0) s1=-s1; end
if (k>1) % outside separatrix; check this part next
kelf=ellipke(1/k2);
trev=2*kelf/(k*omega);
t0=mod(dt,trev);
tmp=s1*k*omega*t0+s*elliptic12(0.5*x(1),1/k2);
[sn,cn,dn]=ellipj(tmp,1/k2);
if (abs(tmp) > kelf) sn=-sn; end
xout(1)=2*asin(sn);
xout(2)=2*s1*omega*k*dn;
else % inside separatrix
trev=4*ellipke(k2)/omega;
t0=mod(dt,trev);
z0=asin(min(1,sin(0.5*x(1))/k));
tmp=s1*omega*t0+s*elliptic12(z0,k2);
[sn,cn,dn]=ellipj(tmp,k2);
xout(1)=2*asin(k*sn);
xout(2)=2*s1*omega*k*cn;
end
x(1)=x(1)+pi/2-phi; % adjust phase back
xout(1)=xout(1)+pi/2-phi;
if (xout(1)>3*pi/2) xout(1)=xout(1)-2*pi; end
if (xout(1)<-pi/2) xout(1)=xout(1)+2*pi; end
end
%%
%
##### SOURCE END #####
-->
</div></body></html>