-
Notifications
You must be signed in to change notification settings - Fork 0
/
nested_n_spheres.py
259 lines (238 loc) · 11.5 KB
/
nested_n_spheres.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# coding: utf-8
import torch
from torch.utils.data import DataLoader
from torch import nn
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
import argparse
torch.set_default_tensor_type(torch.DoubleTensor)
from point_cloud.experiments.dataloaders import ConcentricSphere
from point_cloud.visualization.plots import get_feature_history
from point_cloud.training import Trainer
from point_cloud.visualization.plots import single_feature_plt
# from base import NODElayer, NODE, SONODE, HeavyBallNODE, NesterovNODE, NODEintegrate
from point_cloud.visualization.plots import multi_feature_plt
from point_cloud.models import initial_velocity, ODEBlock, Decoder, count_parameters
from point_cloud.ode_functions import NODEfunc, SONODEfunc, NesterovNODEfunc
parser = argparse.ArgumentParser()
parser.add_argument('--tol', type=float, default=1e-7)
parser.add_argument('--num-epochs', type=int, default=200)
parser.add_argument('--visualize-results', default=1, type=int, choices=[0, 1])
parser.add_argument('--num-runs', help='Number of independent runs per model', default=50)
parser.add_argument('--gpu', default=0)
parser.add_argument('--output-directory', default='point_cloud')
parser.add_argument('--batch-size', default=50, type=int)
parser.add_argument('--names', nargs='+', help='List of models to run', default=None)
parser.add_argument('--xi', help='Value of the "xi" term in generalized model', type=float, default=0.5)
parser.add_argument('--visualize-std', action="store_true", help='Whether to plot one std from the mean')
parser.add_argument('--visualize-features', action="store_true", help='Whether to visualize features progression through training of a single run and not record anything else')
parser.add_argument('--loss', default="smoothl1", help='loss for training')
args = parser.parse_args()
# Create training data in 2D, consisting of a concentric disk and an annulus
data_dim = 2
# updated the range to match HeavyBall exp settings
data_concentric = ConcentricSphere(data_dim, inner_range=(0., .5), outer_range=(0.85, 1.0),
num_points_inner=40, num_points_outer=80)
dataloader = DataLoader(data_concentric, batch_size=args.batch_size, shuffle=True)
class ODENet(nn.Module):
def __init__(self, device, node_layer, prediction_layer, augment_dim=0):
super().__init__()
self.odefunc = node_layer.to(device)
self.prediction_layer = prediction_layer.to(device)
self.augment_dim = augment_dim
self.device = device
def forward(self, x, return_features=False):
if augment_dim > 0:
# Add augmentation
aug = torch.zeros(x.shape[0], augment_dim).to(self.device)
# Shape (batch_size, data_dim + augment_dim)
x_aug = torch.cat([x, aug], 1)
x = x_aug
features = self.odefunc(x)
pred = self.prediction_layer(features)
if return_features:
return features, pred
return pred
device = torch.device(f'cuda:{args.gpu}')
output_directory = f"output/{args.output_directory}"
full_names = ["node", "anode", "sonode", "hbnode", "ghbnode", "nesterovnode", "gnesterovnode"]
names = full_names if args.names is None else args.names
alt_names = ["NODE", "ANODE", "SONODE", "HBNODE", "GHBNODE", "NesterovNODE", "GNesterovNODE"]
all_histories = []
num_epochs = args.num_epochs
tol = args.tol
t0 = 1
tN = 2
tanh = nn.Tanh()
hard_tanh_1 = nn.Hardtanh(min_val=-1, max_val=1, inplace=False)
hard_tanh_5 = nn.Hardtanh(min_val=-5, max_val=5, inplace=False)
hard_tanh_half = nn.Hardtanh(min_val=-0.5, max_val=0.5, inplace=False)
for i, name in enumerate(names):
print("Model:", name)
histories_file_path = f"{output_directory}/{name}_histories.pkl"
if os.path.exists(histories_file_path) and not args.visualize_features:
print("Histories log exists. Skipping run for this model!")
with open(histories_file_path, "rb") as f:
model_histories = pickle.load(f)
else:
num_runs = 50
model_histories = {
"epoch_loss_history": [],
"epoch_nfe_history": [],
"epoch_bnfe_history": []
}
for run_idx in range(num_runs):
print(f"Run #: {run_idx+1}/{num_runs}")
augment_dim=0
if name == "node":
nhid = 20
feature_layers = [ODEBlock(
NODEfunc(data_dim, nhid), t0, tN, tol=tol), Decoder(data_dim, 1)]
elif name == "anode":
nhid = 20
augment_dim=1
feature_layers = [ODEBlock(NODEfunc(
data_dim, nhid, augment_dim=augment_dim), t0, tN, tol=tol), Decoder(data_dim + augment_dim, 1)]
elif name == "sonode":
nhid = 13
feature_layers = [initial_velocity(data_dim, nhid), ODEBlock(SONODEfunc(
data_dim, nhid, modelname="SONODE"), t0, tN, tol=tol, half=True), Decoder(data_dim, 1)]
elif name == "hbnode":
nhid = 14
feature_layers = [initial_velocity(data_dim, nhid), ODEBlock(SONODEfunc(
data_dim, nhid, modelname="HBNODE"), t0, tN, tol=tol, half=True), Decoder(data_dim, 1)]
elif name == "ghbnode":
nhid = 14
feature_layers = [initial_velocity(data_dim, nhid), ODEBlock(SONODEfunc(
data_dim, nhid, modelname="GHBNODE", actv=hard_tanh_half), t0, tN, tol=tol, half=True), Decoder(data_dim, 1)]
elif name == "nesterovnode":
nhid = 14
feature_layers = [initial_velocity(data_dim, nhid), ODEBlock(NesterovNODEfunc(
data_dim, nhid, modelname="NesterovNODE"), 1, 2, tol=tol, half=True, algebraic_from_differential=True), Decoder(data_dim, 1)]
elif name == "gnesterovnode":
nhid = 14
feature_layers = [initial_velocity(data_dim, nhid), ODEBlock(NesterovNODEfunc(
data_dim, nhid, modelname="GNesterovNODE", xi=args.xi, actv=hard_tanh_5), 1, 2, tol=tol, half=True, algebraic_from_differential=True, actv_k=hard_tanh_5, use_momentum=False), Decoder(data_dim, 1)]
model = ODENet(device, nn.Sequential(*feature_layers[:-1]), feature_layers[-1], augment_dim=augment_dim)
if run_idx == 0:
print("# Parameters:", count_parameters(model))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
trainer = Trainer(model, optimizer, device, loss=args.loss, verbose=False)
if args.visualize_features:
# single_feature_plt(inputs, targets)
viz_feature_file_path = f"{output_directory}/viz_features/{name}_feature_viz.pkl"
if os.path.exists(viz_feature_file_path):
print("Feature viz log exists. Skipping run for this model!")
with open(viz_feature_file_path, "rb") as f:
log = pickle.load(f)
inputs = log["inputs"]
targets = log["targets"]
feature_history = log["feature_history"]
else:
# Visualize a batch of data (use a large batch size for visualization)
dataloader_viz = DataLoader(data_concentric, batch_size=args.batch_size, shuffle=True)
for inputs, targets in dataloader_viz:
break
print("Feature viz log does not exist. Let's run this model!")
inputs = inputs.to(device)
targets = targets.to(device)
print("# Epochs:", num_epochs)
feature_history = get_feature_history(trainer, dataloader, inputs,
targets, num_epochs)
print("Logging feature histories to binary files!")
with open(viz_feature_file_path, "wb") as f:
log = {
"inputs": inputs,
"targets": targets,
"feature_history": feature_history
}
pickle.dump(log, f)
number_visualization = 4
step = (num_epochs - 1) // number_visualization
print("Number of features step:", len(feature_history))
print("Step:", step)
print("Feature dimensions:", feature_history[0].shape[-1])
if feature_history[0].shape[-1] == 2:
feature_history = [feature.detach().cpu() for feature in feature_history]
elif feature_history[0].shape[-1] > 2:
feature_history = [feature[:, :2].detach().cpu() for feature in feature_history]
targets = targets.detach().cpu()
alt_name = alt_names[full_names.index(name)]
multi_feature_plt(feature_history[::step], targets, f"{output_directory}/viz_features/{name}.pdf", name=alt_name)
break
else:
# If we don't record feature evolution, simply train model
trainer.train(dataloader, num_epochs)
run_histories = trainer.histories
for attr in ["loss", "nfe", "bnfe"]:
attr_key = f"epoch_{attr}_history"
model_histories[attr_key].append(run_histories[attr_key])
if not args.visualize_features:
# save history to binary file
print("Logging histories to binary files!")
with open(histories_file_path, "wb") as f:
pickle.dump(model_histories, f)
if not args.visualize_features:
all_histories.append(model_histories)
if args.visualize_results == 1 and not args.visualize_features:
histories_attr = [
"epoch_nfe_history",
"epoch_bnfe_history",
"epoch_loss_history",
]
display_attr = ["NFEs", "NFEs (backward)", "Loss"]
save_names = ["nfe", "bnfe", "loss"]
colors = [
"mediumvioletred",
"red",
"deepskyblue",
"royalblue",
"navy",
"green",
"darkorange",
]
line_styles = [
':',
'--',
'-.',
'-.',
'-.',
'-',
'-'
]
line_widths = [
5,
5,
5,
5,
5,
7,
7
]
plot_std = args.visualize_std
font = {'size' : 40}
plt.rc('font', **font)
fig = plt.figure(figsize=(25, 7))
gs = gridspec.GridSpec(1, 3, wspace=0.4)
ax1 = plt.subplot(gs[0, 0])
ax2 = plt.subplot(gs[0, 1])
ax3 = plt.subplot(gs[0, 2])
axes = (ax1, ax2, ax3)
for i, save_name in enumerate(save_names):
for j, name in enumerate(names):
model_histories = all_histories[j]
model_attrs = np.array(model_histories[histories_attr[i]])
epochs = np.arange(model_attrs.shape[1])
mean_attrs = model_attrs.mean(axis=0)
# plot the mean line
axes[i].plot(epochs, mean_attrs, line_styles[j], linewidth=line_widths[j], label=alt_names[j], color=colors[j])
axes[i].grid()
axes[i].set(xlabel="Epoch", ylabel=display_attr[i])
axbox = ax3.get_position()
_ = plt.legend(bbox_to_anchor=(0.5, axbox.y0-0.50), loc="lower center",
bbox_transform=fig.transFigure, ncol=4, handletextpad=0.5, columnspacing=0.6, borderpad=0.3)
plt.savefig(f"{output_directory}/viz_train/point_cloud.pdf", transparent = True, bbox_inches = 'tight', pad_inches = 0)