diff --git a/egklib/src/jvmMain/java/org/cryptobiotic/bigint/BigInteger.java b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/BigInteger.java new file mode 100644 index 00000000..433c99bc --- /dev/null +++ b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/BigInteger.java @@ -0,0 +1,4417 @@ +/* + * Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/* + * Portions Copyright (c) 1995 Colin Plumb. All rights reserved. + */ + +package org.cryptobiotic.bigint; + +import java.util.Arrays; +import java.util.Objects; +import java.util.Random; + +/** + * Immutable arbitrary-precision integers. All operations behave as if + * BigIntegers were represented in two's-complement notation (like Java's + * primitive integer types). BigInteger provides analogues to all of Java's + * primitive integer operators, and all relevant methods from java.lang.Math. + * Additionally, BigInteger provides operations for modular arithmetic, GCD + * calculation, primality testing, prime generation, bit manipulation, + * and a few other miscellaneous operations. + * + *

Semantics of arithmetic operations exactly mimic those of Java's integer + * arithmetic operators, as defined in The Java Language Specification. + * For example, division by zero throws an {@code ArithmeticException}, and + * division of a negative by a positive yields a negative (or zero) remainder. + * + *

Semantics of shift operations extend those of Java's shift operators + * to allow for negative shift distances. A right-shift with a negative + * shift distance results in a left shift, and vice-versa. The unsigned + * right shift operator ({@code >>>}) is omitted since this operation + * only makes sense for a fixed sized word and not for a + * representation conceptually having an infinite number of leading + * virtual sign bits. + * + *

Semantics of bitwise logical operations exactly mimic those of Java's + * bitwise integer operators. The binary operators ({@code and}, + * {@code or}, {@code xor}) implicitly perform sign extension on the shorter + * of the two operands prior to performing the operation. + * + *

Comparison operations perform signed integer comparisons, analogous to + * those performed by Java's relational and equality operators. + * + *

Modular arithmetic operations are provided to compute residues, perform + * exponentiation, and compute multiplicative inverses. These methods always + * return a non-negative result, between {@code 0} and {@code (modulus - 1)}, + * inclusive. + * + *

Bit operations operate on a single bit of the two's-complement + * representation of their operand. If necessary, the operand is sign-extended + * so that it contains the designated bit. None of the single-bit + * operations can produce a BigInteger with a different sign from the + * BigInteger being operated on, as they affect only a single bit, and the + * arbitrarily large abstraction provided by this class ensures that conceptually + * there are infinitely many "virtual sign bits" preceding each BigInteger. + * + *

For the sake of brevity and clarity, pseudo-code is used throughout the + * descriptions of BigInteger methods. The pseudo-code expression + * {@code (i + j)} is shorthand for "a BigInteger whose value is + * that of the BigInteger {@code i} plus that of the BigInteger {@code j}." + * The pseudo-code expression {@code (i == j)} is shorthand for + * "{@code true} if and only if the BigInteger {@code i} represents the same + * value as the BigInteger {@code j}." Other pseudo-code expressions are + * interpreted similarly. + * + *

All methods and constructors in this class throw + * {@code NullPointerException} when passed + * a null object reference for any input parameter. + * + * BigInteger must support values in the range + * -2{@code Integer.MAX_VALUE} (exclusive) to + * +2{@code Integer.MAX_VALUE} (exclusive) + * and may support values outside of that range. + * + * An {@code ArithmeticException} is thrown when a BigInteger + * constructor or method would generate a value outside of the + * supported range. + * + * The range of probable prime values is limited and may be less than + * the full supported positive range of {@code BigInteger}. + * The range must be at least 1 to 2500000000. + * + * @implNote + * In the reference implementation, BigInteger constructors and + * operations throw {@code ArithmeticException} when the result is out + * of the supported range of + * -2{@code Integer.MAX_VALUE} (exclusive) to + * +2{@code Integer.MAX_VALUE} (exclusive). + * + * @jls 4.2.2 Integer Operations + * @author Josh Bloch + * @author Michael McCloskey + * @author Alan Eliasen + * @author Timothy Buktu + * @since 1.1 + */ + +public class BigInteger extends Number implements Comparable { + static final long INFLATED = Long.MIN_VALUE; + + /** + * The signum of this BigInteger: -1 for negative, 0 for zero, or + * 1 for positive. Note that the BigInteger zero must have + * a signum of 0. This is necessary to ensures that there is exactly one + * representation for each BigInteger value. + */ + final int signum; + + /** + * The magnitude of this BigInteger, in big-endian order: the + * zeroth element of this array is the most-significant int of the + * magnitude. The magnitude must be "minimal" in that the most-significant + * int ({@code mag[0]}) must be non-zero. This is necessary to + * ensure that there is exactly one representation for each BigInteger + * value. Note that this implies that the BigInteger zero has a + * zero-length mag array. + */ + final int[] mag; + + // The following fields are stable variables. A stable variable's value + // changes at most once from the default zero value to a non-zero stable + // value. A stable value is calculated lazily on demand. + + /** + * One plus the bitCount of this BigInteger. This is a stable variable. + * + * @see #bitCount + */ + private int bitCountPlusOne; + + /** + * One plus the bitLength of this BigInteger. This is a stable variable. + * (either value is acceptable). + * + * @see #bitLength() + */ + private int bitLengthPlusOne; + + /** + * Two plus the lowest set bit of this BigInteger. This is a stable variable. + * + * @see #getLowestSetBit + */ + private int lowestSetBitPlusTwo; + + /** + * Two plus the index of the lowest-order int in the magnitude of this + * BigInteger that contains a nonzero int. This is a stable variable. The + * least significant int has int-number 0, the next int in order of + * increasing significance has int-number 1, and so forth. + * + *

Note: never used for a BigInteger with a magnitude of zero. + * + * @see #firstNonzeroIntNum() + */ + private int firstNonzeroIntNumPlusTwo; + + /** + * This mask is used to obtain the value of an int as if it were unsigned. + */ + static final long LONG_MASK = 0xffffffffL; + + /** + * This constant limits {@code mag.length} of BigIntegers to the supported + * range. + */ + private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26) + + /** + * Bit lengths larger than this constant can cause overflow in searchLen + * calculation and in BitSieve.singleSearch method. + */ + private static final int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000; + + /** + * The threshold value for using Karatsuba multiplication. If the number + * of ints in both mag arrays are greater than this number, then + * Karatsuba multiplication will be used. This value is found + * experimentally to work well. + */ + private static final int KARATSUBA_THRESHOLD = 80; + + /** + * The threshold value for using 3-way Toom-Cook multiplication. + * If the number of ints in each mag array is greater than the + * Karatsuba threshold, and the number of ints in at least one of + * the mag arrays is greater than this threshold, then Toom-Cook + * multiplication will be used. + */ + private static final int TOOM_COOK_THRESHOLD = 240; + + /** + * The threshold value for using Karatsuba squaring. If the number + * of ints in the number are larger than this value, + * Karatsuba squaring will be used. This value is found + * experimentally to work well. + */ + private static final int KARATSUBA_SQUARE_THRESHOLD = 128; + + /** + * The threshold value for using Toom-Cook squaring. If the number + * of ints in the number are larger than this value, + * Toom-Cook squaring will be used. This value is found + * experimentally to work well. + */ + private static final int TOOM_COOK_SQUARE_THRESHOLD = 216; + + /** + * The threshold value for using Burnikel-Ziegler division. If the number + * of ints in the divisor are larger than this value, Burnikel-Ziegler + * division may be used. This value is found experimentally to work well. + */ + static final int BURNIKEL_ZIEGLER_THRESHOLD = 80; + + /** + * The offset value for using Burnikel-Ziegler division. If the number + * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the + * number of ints in the dividend is greater than the number of ints in the + * divisor plus this value, Burnikel-Ziegler division will be used. This + * value is found experimentally to work well. + */ + static final int BURNIKEL_ZIEGLER_OFFSET = 40; + + /** + * The threshold value for using Schoenhage recursive base conversion. If + * the number of ints in the number are larger than this value, + * the Schoenhage algorithm will be used. In practice, it appears that the + * Schoenhage routine is faster for any threshold down to 2, and is + * relatively flat for thresholds between 2-25, so this choice may be + * varied within this range for very small effect. + */ + private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20; + + /** + * The threshold value for using squaring code to perform multiplication + * of a {@code BigInteger} instance by itself. If the number of ints in + * the number are larger than this value, {@code multiply(this)} will + * return {@code square()}. + */ + private static final int MULTIPLY_SQUARE_THRESHOLD = 20; + + /** + * The threshold for using an intrinsic version of + * implMontgomeryXXX to perform Montgomery multiplication. If the + * number of ints in the number is more than this value we do not + * use the intrinsic. + */ + private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512; + + + // Constructors + + /** + * Translates a byte sub-array containing the two's-complement binary + * representation of a BigInteger into a BigInteger. The sub-array is + * specified via an offset into the array and a length. The sub-array is + * assumed to be in big-endian byte-order: the most significant + * byte is the element at index {@code off}. The {@code val} array is + * assumed to be unchanged for the duration of the constructor call. + * + * An {@code IndexOutOfBoundsException} is thrown if the length of the array + * {@code val} is non-zero and either {@code off} is negative, {@code len} + * is negative, or {@code off+len} is greater than the length of + * {@code val}. + * + * @param val byte array containing a sub-array which is the big-endian + * two's-complement binary representation of a BigInteger. + * @param off the start offset of the binary representation. + * @param len the number of bytes to use. + * @throws NumberFormatException {@code val} is zero bytes long. + * @throws IndexOutOfBoundsException if the provided array offset and + * length would cause an index into the byte array to be + * negative or greater than or equal to the array length. + * @since 9 + */ + public BigInteger(byte[] val, int off, int len) { + if (val.length == 0) { + throw new NumberFormatException("Zero length BigInteger"); + } + Objects.checkFromIndexSize(off, len, val.length); + + if (val[off] < 0) { + mag = makePositive(val, off, len); + signum = -1; + } else { + mag = stripLeadingZeroBytes(val, off, len); + signum = (mag.length == 0 ? 0 : 1); + } + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /** + * Translates a byte array containing the two's-complement binary + * representation of a BigInteger into a BigInteger. The input array is + * assumed to be in big-endian byte-order: the most significant + * byte is in the zeroth element. The {@code val} array is assumed to be + * unchanged for the duration of the constructor call. + * + * @param val big-endian two's-complement binary representation of a + * BigInteger. + * @throws NumberFormatException {@code val} is zero bytes long. + */ + public BigInteger(byte[] val) { + this(val, 0, val.length); + } + + /** + * This private constructor translates an int array containing the + * two's-complement binary representation of a BigInteger into a + * BigInteger. The input array is assumed to be in big-endian + * int-order: the most significant int is in the zeroth element. The + * {@code val} array is assumed to be unchanged for the duration of + * the constructor call. + */ + private BigInteger(int[] val) { + if (val.length == 0) + throw new NumberFormatException("Zero length BigInteger"); + + if (val[0] < 0) { + mag = makePositive(val); + signum = -1; + } else { + mag = trustedStripLeadingZeroInts(val); + signum = (mag.length == 0 ? 0 : 1); + } + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /** + * Translates the sign-magnitude representation of a BigInteger into a + * BigInteger. The sign is represented as an integer signum value: -1 for + * negative, 0 for zero, or 1 for positive. The magnitude is a sub-array of + * a byte array in big-endian byte-order: the most significant byte + * is the element at index {@code off}. A zero value of the length + * {@code len} is permissible, and will result in a BigInteger value of 0, + * whether signum is -1, 0 or 1. The {@code magnitude} array is assumed to + * be unchanged for the duration of the constructor call. + * + * An {@code IndexOutOfBoundsException} is thrown if the length of the array + * {@code magnitude} is non-zero and either {@code off} is negative, + * {@code len} is negative, or {@code off+len} is greater than the length of + * {@code magnitude}. + * + * @param signum signum of the number (-1 for negative, 0 for zero, 1 + * for positive). + * @param magnitude big-endian binary representation of the magnitude of + * the number. + * @param off the start offset of the binary representation. + * @param len the number of bytes to use. + * @throws NumberFormatException {@code signum} is not one of the three + * legal values (-1, 0, and 1), or {@code signum} is 0 and + * {@code magnitude} contains one or more non-zero bytes. + * @throws IndexOutOfBoundsException if the provided array offset and + * length would cause an index into the byte array to be + * negative or greater than or equal to the array length. + * @since 9 + */ + public BigInteger(int signum, byte[] magnitude, int off, int len) { + if (signum < -1 || signum > 1) { + throw(new NumberFormatException("Invalid signum value")); + } + Objects.checkFromIndexSize(off, len, magnitude.length); + + // stripLeadingZeroBytes() returns a zero length array if len == 0 + this.mag = stripLeadingZeroBytes(magnitude, off, len); + + if (this.mag.length == 0) { + this.signum = 0; + } else { + if (signum == 0) + throw(new NumberFormatException("signum-magnitude mismatch")); + this.signum = signum; + } + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /** + * Translates the sign-magnitude representation of a BigInteger into a + * BigInteger. The sign is represented as an integer signum value: -1 for + * negative, 0 for zero, or 1 for positive. The magnitude is a byte array + * in big-endian byte-order: the most significant byte is the + * zeroth element. A zero-length magnitude array is permissible, and will + * result in a BigInteger value of 0, whether signum is -1, 0 or 1. The + * {@code magnitude} array is assumed to be unchanged for the duration of + * the constructor call. + * + * @param signum signum of the number (-1 for negative, 0 for zero, 1 + * for positive). + * @param magnitude big-endian binary representation of the magnitude of + * the number. + * @throws NumberFormatException {@code signum} is not one of the three + * legal values (-1, 0, and 1), or {@code signum} is 0 and + * {@code magnitude} contains one or more non-zero bytes. + */ + public BigInteger(int signum, byte[] magnitude) { + this(signum, magnitude, 0, magnitude.length); + } + + /** + * A constructor for internal use that translates the sign-magnitude + * representation of a BigInteger into a BigInteger. It checks the + * arguments and copies the magnitude so this constructor would be + * safe for external use. The {@code magnitude} array is assumed to be + * unchanged for the duration of the constructor call. + */ + private BigInteger(int signum, int[] magnitude) { + this.mag = stripLeadingZeroInts(magnitude); + + if (signum < -1 || signum > 1) + throw(new NumberFormatException("Invalid signum value")); + + if (this.mag.length == 0) { + this.signum = 0; + } else { + if (signum == 0) + throw(new NumberFormatException("signum-magnitude mismatch")); + this.signum = signum; + } + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /** + * Translates the String representation of a BigInteger in the + * specified radix into a BigInteger. The String representation + * consists of an optional minus or plus sign followed by a + * sequence of one or more digits in the specified radix. The + * character-to-digit mapping is provided by {@link + * Character#digit(char, int) Character.digit}. The String may + * not contain any extraneous characters (whitespace, for + * example). + * + * @param val String representation of BigInteger. + * @param radix radix to be used in interpreting {@code val}. + * @throws NumberFormatException {@code val} is not a valid representation + * of a BigInteger in the specified radix, or {@code radix} is + * outside the range from {@link Character#MIN_RADIX} to + * {@link Character#MAX_RADIX}, inclusive. + */ + public BigInteger(String val, int radix) { + int cursor = 0, numDigits; + final int len = val.length(); + + if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) + throw new NumberFormatException("Radix out of range"); + if (len == 0) + throw new NumberFormatException("Zero length BigInteger"); + + // Check for at most one leading sign + int sign = 1; + int index1 = val.lastIndexOf('-'); + int index2 = val.lastIndexOf('+'); + if (index1 >= 0) { + if (index1 != 0 || index2 >= 0) { + throw new NumberFormatException("Illegal embedded sign character"); + } + sign = -1; + cursor = 1; + } else if (index2 >= 0) { + if (index2 != 0) { + throw new NumberFormatException("Illegal embedded sign character"); + } + cursor = 1; + } + if (cursor == len) + throw new NumberFormatException("Zero length BigInteger"); + + // Skip leading zeros and compute number of digits in magnitude + while (cursor < len && + Character.digit(val.charAt(cursor), radix) == 0) { + cursor++; + } + + if (cursor == len) { + signum = 0; + mag = ZERO.mag; + return; + } + + numDigits = len - cursor; + signum = sign; + + // Pre-allocate array of expected size. May be too large but can + // never be too small. Typically exact. + long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1; + if (numBits + 31 >= (1L << 32)) { + reportOverflow(); + } + int numWords = (int) (numBits + 31) >>> 5; + int[] magnitude = new int[numWords]; + + // Process first (potentially short) digit group + int firstGroupLen = numDigits % digitsPerInt[radix]; + if (firstGroupLen == 0) + firstGroupLen = digitsPerInt[radix]; + String group = val.substring(cursor, cursor += firstGroupLen); + magnitude[numWords - 1] = Integer.parseInt(group, radix); + if (magnitude[numWords - 1] < 0) + throw new NumberFormatException("Illegal digit"); + + // Process remaining digit groups + int superRadix = intRadix[radix]; + int groupVal = 0; + while (cursor < len) { + group = val.substring(cursor, cursor += digitsPerInt[radix]); + groupVal = Integer.parseInt(group, radix); + if (groupVal < 0) + throw new NumberFormatException("Illegal digit"); + destructiveMulAdd(magnitude, superRadix, groupVal); + } + // Required for cases where the array was overallocated. + mag = trustedStripLeadingZeroInts(magnitude); + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /* + * Constructs a new BigInteger using a char array with radix=10. + * Sign is precalculated outside and not allowed in the val. The {@code val} + * array is assumed to be unchanged for the duration of the constructor + * call. + */ + BigInteger(char[] val, int sign, int len) { + int cursor = 0, numDigits; + + // Skip leading zeros and compute number of digits in magnitude + while (cursor < len && Character.digit(val[cursor], 10) == 0) { + cursor++; + } + if (cursor == len) { + signum = 0; + mag = ZERO.mag; + return; + } + + numDigits = len - cursor; + signum = sign; + // Pre-allocate array of expected size + int numWords; + if (len < 10) { + numWords = 1; + } else { + long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1; + if (numBits + 31 >= (1L << 32)) { + reportOverflow(); + } + numWords = (int) (numBits + 31) >>> 5; + } + int[] magnitude = new int[numWords]; + + // Process first (potentially short) digit group + int firstGroupLen = numDigits % digitsPerInt[10]; + if (firstGroupLen == 0) + firstGroupLen = digitsPerInt[10]; + magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen); + + // Process remaining digit groups + while (cursor < len) { + int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]); + destructiveMulAdd(magnitude, intRadix[10], groupVal); + } + mag = trustedStripLeadingZeroInts(magnitude); + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + // Create an integer with the digits between the two indexes + // Assumes start < end. The result may be negative, but it + // is to be treated as an unsigned value. + private int parseInt(char[] source, int start, int end) { + int result = Character.digit(source[start++], 10); + if (result == -1) + throw new NumberFormatException(new String(source)); + + for (int index = start; index < end; index++) { + int nextVal = Character.digit(source[index], 10); + if (nextVal == -1) + throw new NumberFormatException(new String(source)); + result = 10*result + nextVal; + } + + return result; + } + + // bitsPerDigit in the given radix times 1024 + // Rounded up to avoid underallocation. + private static long bitsPerDigit[] = { 0, 0, + 1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672, + 3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633, + 4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210, + 5253, 5295}; + + // Multiply x array times word y in place, and add word z + private static void destructiveMulAdd(int[] x, int y, int z) { + // Perform the multiplication word by word + long ylong = y & LONG_MASK; + long zlong = z & LONG_MASK; + int len = x.length; + + long product = 0; + long carry = 0; + for (int i = len-1; i >= 0; i--) { + product = ylong * (x[i] & LONG_MASK) + carry; + x[i] = (int)product; + carry = product >>> 32; + } + + // Perform the addition + long sum = (x[len-1] & LONG_MASK) + zlong; + x[len-1] = (int)sum; + carry = sum >>> 32; + for (int i = len-2; i >= 0; i--) { + sum = (x[i] & LONG_MASK) + carry; + x[i] = (int)sum; + carry = sum >>> 32; + } + } + + /** + * Translates the decimal String representation of a BigInteger + * into a BigInteger. The String representation consists of an + * optional minus or plus sign followed by a sequence of one or + * more decimal digits. The character-to-digit mapping is + * provided by {@link Character#digit(char, int) + * Character.digit}. The String may not contain any extraneous + * characters (whitespace, for example). + * + * @param val decimal String representation of BigInteger. + * @throws NumberFormatException {@code val} is not a valid representation + * of a BigInteger. + */ + public BigInteger(String val) { + this(val, 10); + } + + /** + * Constructs a randomly generated BigInteger, uniformly distributed over + * the range 0 to (2{@code numBits} - 1), inclusive. + * The uniformity of the distribution assumes that a fair source of random + * bits is provided in {@code rnd}. Note that this constructor always + * constructs a non-negative BigInteger. + * + * @param numBits maximum bitLength of the new BigInteger. + * @param rnd source of randomness to be used in computing the new + * BigInteger. + * @throws IllegalArgumentException {@code numBits} is negative. + * @see #bitLength() + */ + public BigInteger(int numBits, Random rnd) { + byte[] magnitude = randomBits(numBits, rnd); + + try { + // stripLeadingZeroBytes() returns a zero length array if len == 0 + this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length); + + if (this.mag.length == 0) { + this.signum = 0; + } else { + this.signum = 1; + } + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } finally { + Arrays.fill(magnitude, (byte)0); + } + } + + private static byte[] randomBits(int numBits, Random rnd) { + if (numBits < 0) + throw new IllegalArgumentException("numBits must be non-negative"); + int numBytes = (int)(((long)numBits+7)/8); // avoid overflow + byte[] randomBits = new byte[numBytes]; + + // Generate random bytes and mask out any excess bits + if (numBytes > 0) { + rnd.nextBytes(randomBits); + int excessBits = 8*numBytes - numBits; + randomBits[0] &= (1 << (8-excessBits)) - 1; + } + return randomBits; + } + + // Minimum size in bits that the requested prime number has + // before we use the large prime number generating algorithms. + // The cutoff of 95 was chosen empirically for best performance. + private static final int SMALL_PRIME_THRESHOLD = 95; + + // Certainty required to meet the spec of probablePrime + private static final int DEFAULT_PRIME_CERTAINTY = 100; + + /** + * This internal constructor differs from its public cousin + * with the arguments reversed in two ways: it assumes that its + * arguments are correct, and it doesn't copy the magnitude array. + */ + BigInteger(int[] magnitude, int signum) { + this.signum = (magnitude.length == 0 ? 0 : signum); + this.mag = magnitude; + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /** + * This private constructor is for internal use and assumes that its + * arguments are correct. The {@code magnitude} array is assumed to be + * unchanged for the duration of the constructor call. + */ + private BigInteger(byte[] magnitude, int signum) { + this.signum = (magnitude.length == 0 ? 0 : signum); + this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length); + if (mag.length >= MAX_MAG_LENGTH) { + checkRange(); + } + } + + /** + * Throws an {@code ArithmeticException} if the {@code BigInteger} would be + * out of the supported range. + * + * @throws ArithmeticException if {@code this} exceeds the supported range. + */ + private void checkRange() { + if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) { + reportOverflow(); + } + } + + private static void reportOverflow() { + throw new ArithmeticException("BigInteger would overflow supported range"); + } + + //Static Factory Methods + + /** + * Returns a BigInteger whose value is equal to that of the + * specified {@code long}. + * + * @apiNote This static factory method is provided in preference + * to a ({@code long}) constructor because it allows for reuse of + * frequently used BigIntegers. + * + * @param val value of the BigInteger to return. + * @return a BigInteger with the specified value. + */ + public static BigInteger valueOf(long val) { + // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant + if (val == 0) + return ZERO; + if (val > 0 && val <= MAX_CONSTANT) + return posConst[(int) val]; + else if (val < 0 && val >= -MAX_CONSTANT) + return negConst[(int) -val]; + + return new BigInteger(val); + } + + /** + * Constructs a BigInteger with the specified value, which may not be zero. + */ + private BigInteger(long val) { + if (val < 0) { + val = -val; + signum = -1; + } else { + signum = 1; + } + + int highWord = (int)(val >>> 32); + if (highWord == 0) { + mag = new int[1]; + mag[0] = (int)val; + } else { + mag = new int[2]; + mag[0] = highWord; + mag[1] = (int)val; + } + } + + /** + * Returns a BigInteger with the given two's complement representation. + * Assumes that the input array will not be modified (the returned + * BigInteger will reference the input array if feasible). + */ + private static BigInteger valueOf(int val[]) { + return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val)); + } + + // Constants + + /** + * Initialize static constant array when class is loaded. + */ + private static final int MAX_CONSTANT = 16; + private static final BigInteger[] posConst = new BigInteger[MAX_CONSTANT+1]; + private static final BigInteger[] negConst = new BigInteger[MAX_CONSTANT+1]; + + /** + * The cache of powers of each radix. This allows us to not have to + * recalculate powers of radix^(2^n) more than once. This speeds + * Schoenhage recursive base conversion significantly. + */ + private static volatile BigInteger[][] powerCache; + + /** The cache of logarithms of radices for base conversion. */ + private static final double[] logCache; + + /** The natural log of 2. This is used in computing cache indices. */ + private static final double LOG_TWO = Math.log(2.0); + + static { + assert 0 < KARATSUBA_THRESHOLD + && KARATSUBA_THRESHOLD < TOOM_COOK_THRESHOLD + && TOOM_COOK_THRESHOLD < Integer.MAX_VALUE + && 0 < KARATSUBA_SQUARE_THRESHOLD + && KARATSUBA_SQUARE_THRESHOLD < TOOM_COOK_SQUARE_THRESHOLD + && TOOM_COOK_SQUARE_THRESHOLD < Integer.MAX_VALUE : + "Algorithm thresholds are inconsistent"; + + for (int i = 1; i <= MAX_CONSTANT; i++) { + int[] magnitude = new int[1]; + magnitude[0] = i; + posConst[i] = new BigInteger(magnitude, 1); + negConst[i] = new BigInteger(magnitude, -1); + } + + /* + * Initialize the cache of radix^(2^x) values used for base conversion + * with just the very first value. Additional values will be created + * on demand. + */ + powerCache = new BigInteger[Character.MAX_RADIX+1][]; + logCache = new double[Character.MAX_RADIX+1]; + + for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) { + powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) }; + logCache[i] = Math.log(i); + } + } + + /** + * The BigInteger constant zero. + * + * @since 1.2 + */ + public static final BigInteger ZERO = new BigInteger(new int[0], 0); + + /** + * The BigInteger constant one. + * + * @since 1.2 + */ + public static final BigInteger ONE = valueOf(1); + + /** + * The BigInteger constant two. + * + * @since 9 + */ + public static final BigInteger TWO = valueOf(2); + + /** + * The BigInteger constant -1. (Not exported.) + */ + private static final BigInteger NEGATIVE_ONE = valueOf(-1); + + /** + * The BigInteger constant ten. + * + * @since 1.5 + */ + public static final BigInteger TEN = valueOf(10); + + // Arithmetic Operations + + /** + * Returns a BigInteger whose value is {@code (this + val)}. + * + * @param val value to be added to this BigInteger. + * @return {@code this + val} + */ + public BigInteger add(BigInteger val) { + if (val.signum == 0) + return this; + if (signum == 0) + return val; + if (val.signum == signum) + return new BigInteger(add(mag, val.mag), signum); + + int cmp = compareMagnitude(val); + if (cmp == 0) + return ZERO; + int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) + : subtract(val.mag, mag)); + resultMag = trustedStripLeadingZeroInts(resultMag); + + return new BigInteger(resultMag, cmp == signum ? 1 : -1); + } + + /** + * Package private methods used by BigDecimal code to add a BigInteger + * with a long. Assumes val is not equal to INFLATED. + */ + BigInteger add(long val) { + if (val == 0) + return this; + if (signum == 0) + return valueOf(val); + if (Long.signum(val) == signum) + return new BigInteger(add(mag, Math.abs(val)), signum); + int cmp = compareMagnitude(val); + if (cmp == 0) + return ZERO; + int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag)); + resultMag = trustedStripLeadingZeroInts(resultMag); + return new BigInteger(resultMag, cmp == signum ? 1 : -1); + } + + /** + * Adds the contents of the int array x and long value val. This + * method allocates a new int array to hold the answer and returns + * a reference to that array. Assumes x.length > 0 and val is + * non-negative + */ + private static int[] add(int[] x, long val) { + int[] y; + long sum = 0; + int xIndex = x.length; + int[] result; + int highWord = (int)(val >>> 32); + if (highWord == 0) { + result = new int[xIndex]; + sum = (x[--xIndex] & LONG_MASK) + val; + result[xIndex] = (int)sum; + } else { + if (xIndex == 1) { + result = new int[2]; + sum = val + (x[0] & LONG_MASK); + result[1] = (int)sum; + result[0] = (int)(sum >>> 32); + return result; + } else { + result = new int[xIndex]; + sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK); + result[xIndex] = (int)sum; + sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32); + result[xIndex] = (int)sum; + } + } + // Copy remainder of longer number while carry propagation is required + boolean carry = (sum >>> 32 != 0); + while (xIndex > 0 && carry) + carry = ((result[--xIndex] = x[xIndex] + 1) == 0); + // Copy remainder of longer number + while (xIndex > 0) + result[--xIndex] = x[xIndex]; + // Grow result if necessary + if (carry) { + int bigger[] = new int[result.length + 1]; + System.arraycopy(result, 0, bigger, 1, result.length); + bigger[0] = 0x01; + return bigger; + } + return result; + } + + /** + * Adds the contents of the int arrays x and y. This method allocates + * a new int array to hold the answer and returns a reference to that + * array. + */ + private static int[] add(int[] x, int[] y) { + // If x is shorter, swap the two arrays + if (x.length < y.length) { + int[] tmp = x; + x = y; + y = tmp; + } + + int xIndex = x.length; + int yIndex = y.length; + int result[] = new int[xIndex]; + long sum = 0; + if (yIndex == 1) { + sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ; + result[xIndex] = (int)sum; + } else { + // Add common parts of both numbers + while (yIndex > 0) { + sum = (x[--xIndex] & LONG_MASK) + + (y[--yIndex] & LONG_MASK) + (sum >>> 32); + result[xIndex] = (int)sum; + } + } + // Copy remainder of longer number while carry propagation is required + boolean carry = (sum >>> 32 != 0); + while (xIndex > 0 && carry) + carry = ((result[--xIndex] = x[xIndex] + 1) == 0); + + // Copy remainder of longer number + while (xIndex > 0) + result[--xIndex] = x[xIndex]; + + // Grow result if necessary + if (carry) { + int bigger[] = new int[result.length + 1]; + System.arraycopy(result, 0, bigger, 1, result.length); + bigger[0] = 0x01; + return bigger; + } + return result; + } + + private static int[] subtract(long val, int[] little) { + int highWord = (int)(val >>> 32); + if (highWord == 0) { + int result[] = new int[1]; + result[0] = (int)(val - (little[0] & LONG_MASK)); + return result; + } else { + int result[] = new int[2]; + if (little.length == 1) { + long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK); + result[1] = (int)difference; + // Subtract remainder of longer number while borrow propagates + boolean borrow = (difference >> 32 != 0); + if (borrow) { + result[0] = highWord - 1; + } else { // Copy remainder of longer number + result[0] = highWord; + } + return result; + } else { // little.length == 2 + long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK); + result[1] = (int)difference; + difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32); + result[0] = (int)difference; + return result; + } + } + } + + /** + * Subtracts the contents of the second argument (val) from the + * first (big). The first int array (big) must represent a larger number + * than the second. This method allocates the space necessary to hold the + * answer. + * assumes val >= 0 + */ + private static int[] subtract(int[] big, long val) { + int highWord = (int)(val >>> 32); + int bigIndex = big.length; + int result[] = new int[bigIndex]; + long difference = 0; + + if (highWord == 0) { + difference = (big[--bigIndex] & LONG_MASK) - val; + result[bigIndex] = (int)difference; + } else { + difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK); + result[bigIndex] = (int)difference; + difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32); + result[bigIndex] = (int)difference; + } + + // Subtract remainder of longer number while borrow propagates + boolean borrow = (difference >> 32 != 0); + while (bigIndex > 0 && borrow) + borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); + + // Copy remainder of longer number + while (bigIndex > 0) + result[--bigIndex] = big[bigIndex]; + + return result; + } + + /** + * Returns a BigInteger whose value is {@code (this - val)}. + * + * @param val value to be subtracted from this BigInteger. + * @return {@code this - val} + */ + public BigInteger subtract(BigInteger val) { + if (val.signum == 0) + return this; + if (signum == 0) + return val.negate(); + if (val.signum != signum) + return new BigInteger(add(mag, val.mag), signum); + + int cmp = compareMagnitude(val); + if (cmp == 0) + return ZERO; + int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) + : subtract(val.mag, mag)); + resultMag = trustedStripLeadingZeroInts(resultMag); + return new BigInteger(resultMag, cmp == signum ? 1 : -1); + } + + /** + * Subtracts the contents of the second int arrays (little) from the + * first (big). The first int array (big) must represent a larger number + * than the second. This method allocates the space necessary to hold the + * answer. + */ + private static int[] subtract(int[] big, int[] little) { + int bigIndex = big.length; + int result[] = new int[bigIndex]; + int littleIndex = little.length; + long difference = 0; + + // Subtract common parts of both numbers + while (littleIndex > 0) { + difference = (big[--bigIndex] & LONG_MASK) - + (little[--littleIndex] & LONG_MASK) + + (difference >> 32); + result[bigIndex] = (int)difference; + } + + // Subtract remainder of longer number while borrow propagates + boolean borrow = (difference >> 32 != 0); + while (bigIndex > 0 && borrow) + borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); + + // Copy remainder of longer number + while (bigIndex > 0) + result[--bigIndex] = big[bigIndex]; + + return result; + } + + /** + * Returns a BigInteger whose value is {@code (this * val)}. + * + * @implNote An implementation may offer better algorithmic + * performance when {@code val == this}. + * + * @param val value to be multiplied by this BigInteger. + * @return {@code this * val} + */ + public BigInteger multiply(BigInteger val) { + return multiply(val, false); + } + + /** + * Returns a BigInteger whose value is {@code (this * val)}. If + * the invocation is recursive certain overflow checks are skipped. + * + * @param val value to be multiplied by this BigInteger. + * @param isRecursion whether this is a recursive invocation + * @return {@code this * val} + */ + private BigInteger multiply(BigInteger val, boolean isRecursion) { + if (val.signum == 0 || signum == 0) + return ZERO; + + int xlen = mag.length; + + if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) { + return square(); + } + + int ylen = val.mag.length; + + if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) { + int resultSign = signum == val.signum ? 1 : -1; + if (val.mag.length == 1) { + return multiplyByInt(mag,val.mag[0], resultSign); + } + if (mag.length == 1) { + return multiplyByInt(val.mag,mag[0], resultSign); + } + int[] result = multiplyToLen(mag, xlen, + val.mag, ylen, null); + result = trustedStripLeadingZeroInts(result); + return new BigInteger(result, resultSign); + } else { + if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) { + return multiplyKaratsuba(this, val); + } else { + // + // In "Hacker's Delight" section 2-13, p.33, it is explained + // that if x and y are unsigned 32-bit quantities and m and n + // are their respective numbers of leading zeros within 32 bits, + // then the number of leading zeros within their product as a + // 64-bit unsigned quantity is either m + n or m + n + 1. If + // their product is not to overflow, it cannot exceed 32 bits, + // and so the number of leading zeros of the product within 64 + // bits must be at least 32, i.e., the leftmost set bit is at + // zero-relative position 31 or less. + // + // From the above there are three cases: + // + // m + n leftmost set bit condition + // ----- ---------------- --------- + // >= 32 x <= 64 - 32 = 32 no overflow + // == 31 x >= 64 - 32 = 32 possible overflow + // <= 30 x >= 64 - 31 = 33 definite overflow + // + // The "possible overflow" condition cannot be detected by + // examning data lengths alone and requires further calculation. + // + // By analogy, if 'this' and 'val' have m and n as their + // respective numbers of leading zeros within 32*MAX_MAG_LENGTH + // bits, then: + // + // m + n >= 32*MAX_MAG_LENGTH no overflow + // m + n == 32*MAX_MAG_LENGTH - 1 possible overflow + // m + n <= 32*MAX_MAG_LENGTH - 2 definite overflow + // + // Note however that if the number of ints in the result + // were to be MAX_MAG_LENGTH and mag[0] < 0, then there would + // be overflow. As a result the leftmost bit (of mag[0]) cannot + // be used and the constraints must be adjusted by one bit to: + // + // m + n > 32*MAX_MAG_LENGTH no overflow + // m + n == 32*MAX_MAG_LENGTH possible overflow + // m + n < 32*MAX_MAG_LENGTH definite overflow + // + // The foregoing leading zero-based discussion is for clarity + // only. The actual calculations use the estimated bit length + // of the product as this is more natural to the internal + // array representation of the magnitude which has no leading + // zero elements. + // + if (!isRecursion) { + // The bitLength() instance method is not used here as we + // are only considering the magnitudes as non-negative. The + // Toom-Cook multiplication algorithm determines the sign + // at its end from the two signum values. + if ((long)bitLength(mag, mag.length) + + (long)bitLength(val.mag, val.mag.length) > + 32L*MAX_MAG_LENGTH) { + reportOverflow(); + } + } + + return multiplyToomCook3(this, val); + } + } + } + + private static BigInteger multiplyByInt(int[] x, int y, int sign) { + if (Integer.bitCount(y) == 1) { + return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign); + } + int xlen = x.length; + int[] rmag = new int[xlen + 1]; + long carry = 0; + long yl = y & LONG_MASK; + int rstart = rmag.length - 1; + for (int i = xlen - 1; i >= 0; i--) { + long product = (x[i] & LONG_MASK) * yl + carry; + rmag[rstart--] = (int)product; + carry = product >>> 32; + } + if (carry == 0L) { + rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); + } else { + rmag[rstart] = (int)carry; + } + return new BigInteger(rmag, sign); + } + + /** + * Package private methods used by BigDecimal code to multiply a BigInteger + * with a long. Assumes v is not equal to INFLATED. + */ + BigInteger multiply(long v) { + if (v == 0 || signum == 0) + return ZERO; + if (v == INFLATED) + return multiply(BigInteger.valueOf(v)); + int rsign = (v > 0 ? signum : -signum); + if (v < 0) + v = -v; + long dh = v >>> 32; // higher order bits + long dl = v & LONG_MASK; // lower order bits + + int xlen = mag.length; + int[] value = mag; + int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]); + long carry = 0; + int rstart = rmag.length - 1; + for (int i = xlen - 1; i >= 0; i--) { + long product = (value[i] & LONG_MASK) * dl + carry; + rmag[rstart--] = (int)product; + carry = product >>> 32; + } + rmag[rstart] = (int)carry; + if (dh != 0L) { + carry = 0; + rstart = rmag.length - 2; + for (int i = xlen - 1; i >= 0; i--) { + long product = (value[i] & LONG_MASK) * dh + + (rmag[rstart] & LONG_MASK) + carry; + rmag[rstart--] = (int)product; + carry = product >>> 32; + } + rmag[0] = (int)carry; + } + if (carry == 0L) + rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); + return new BigInteger(rmag, rsign); + } + + /** + * Multiplies int arrays x and y to the specified lengths and places + * the result into z. There will be no leading zeros in the resultant array. + */ + private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { + multiplyToLenCheck(x, xlen); + multiplyToLenCheck(y, ylen); + return implMultiplyToLen(x, xlen, y, ylen, z); + } + + // @IntrinsicCandidate + private static int[] implMultiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { + int xstart = xlen - 1; + int ystart = ylen - 1; + + if (z == null || z.length < (xlen+ ylen)) + z = new int[xlen+ylen]; + + long carry = 0; + for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) { + long product = (y[j] & LONG_MASK) * + (x[xstart] & LONG_MASK) + carry; + z[k] = (int)product; + carry = product >>> 32; + } + z[xstart] = (int)carry; + + for (int i = xstart-1; i >= 0; i--) { + carry = 0; + for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) { + long product = (y[j] & LONG_MASK) * + (x[i] & LONG_MASK) + + (z[k] & LONG_MASK) + carry; + z[k] = (int)product; + carry = product >>> 32; + } + z[i] = (int)carry; + } + return z; + } + + private static void multiplyToLenCheck(int[] array, int length) { + if (length <= 0) { + return; // not an error because multiplyToLen won't execute if len <= 0 + } + + Objects.requireNonNull(array); + + if (length > array.length) { + throw new ArrayIndexOutOfBoundsException(length - 1); + } + } + + /** + * Multiplies two BigIntegers using the Karatsuba multiplication + * algorithm. This is a recursive divide-and-conquer algorithm which is + * more efficient for large numbers than what is commonly called the + * "grade-school" algorithm used in multiplyToLen. If the numbers to be + * multiplied have length n, the "grade-school" algorithm has an + * asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm + * has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this + * increased performance by doing 3 multiplies instead of 4 when + * evaluating the product. As it has some overhead, should be used when + * both numbers are larger than a certain threshold (found + * experimentally). + * + * See: http://en.wikipedia.org/wiki/Karatsuba_algorithm + */ + private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) { + int xlen = x.mag.length; + int ylen = y.mag.length; + + // The number of ints in each half of the number. + int half = (Math.max(xlen, ylen)+1) / 2; + + // xl and yl are the lower halves of x and y respectively, + // xh and yh are the upper halves. + BigInteger xl = x.getLower(half); + BigInteger xh = x.getUpper(half); + BigInteger yl = y.getLower(half); + BigInteger yh = y.getUpper(half); + + BigInteger p1 = xh.multiply(yh); // p1 = xh*yh + BigInteger p2 = xl.multiply(yl); // p2 = xl*yl + + // p3=(xh+xl)*(yh+yl) + BigInteger p3 = xh.add(xl).multiply(yh.add(yl)); + + // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2 + BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2); + + if (x.signum != y.signum) { + return result.negate(); + } else { + return result; + } + } + + /** + * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication + * algorithm. This is a recursive divide-and-conquer algorithm which is + * more efficient for large numbers than what is commonly called the + * "grade-school" algorithm used in multiplyToLen. If the numbers to be + * multiplied have length n, the "grade-school" algorithm has an + * asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a + * complexity of about O(n^1.465). It achieves this increased asymptotic + * performance by breaking each number into three parts and by doing 5 + * multiplies instead of 9 when evaluating the product. Due to overhead + * (additions, shifts, and one division) in the Toom-Cook algorithm, it + * should only be used when both numbers are larger than a certain + * threshold (found experimentally). This threshold is generally larger + * than that for Karatsuba multiplication, so this algorithm is generally + * only used when numbers become significantly larger. + * + * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined + * by Marco Bodrato. + * + * See: http://bodrato.it/toom-cook/ + * http://bodrato.it/papers/#WAIFI2007 + * + * "Towards Optimal Toom-Cook Multiplication for Univariate and + * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO; + * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133, + * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007. + * + */ + private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) { + int alen = a.mag.length; + int blen = b.mag.length; + + int largest = Math.max(alen, blen); + + // k is the size (in ints) of the lower-order slices. + int k = (largest+2)/3; // Equal to ceil(largest/3) + + // r is the size (in ints) of the highest-order slice. + int r = largest - 2*k; + + // Obtain slices of the numbers. a2 and b2 are the most significant + // bits of the numbers a and b, and a0 and b0 the least significant. + BigInteger a0, a1, a2, b0, b1, b2; + a2 = a.getToomSlice(k, r, 0, largest); + a1 = a.getToomSlice(k, r, 1, largest); + a0 = a.getToomSlice(k, r, 2, largest); + b2 = b.getToomSlice(k, r, 0, largest); + b1 = b.getToomSlice(k, r, 1, largest); + b0 = b.getToomSlice(k, r, 2, largest); + + BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1; + + v0 = a0.multiply(b0, true); + da1 = a2.add(a0); + db1 = b2.add(b0); + vm1 = da1.subtract(a1).multiply(db1.subtract(b1), true); + da1 = da1.add(a1); + db1 = db1.add(b1); + v1 = da1.multiply(db1, true); + v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply( + db1.add(b2).shiftLeft(1).subtract(b0), true); + vinf = a2.multiply(b2, true); + + // The algorithm requires two divisions by 2 and one by 3. + // All divisions are known to be exact, that is, they do not produce + // remainders, and all results are positive. The divisions by 2 are + // implemented as right shifts which are relatively efficient, leaving + // only an exact division by 3, which is done by a specialized + // linear-time algorithm. + t2 = v2.subtract(vm1).exactDivideBy3(); + tm1 = v1.subtract(vm1).shiftRight(1); + t1 = v1.subtract(v0); + t2 = t2.subtract(t1).shiftRight(1); + t1 = t1.subtract(tm1).subtract(vinf); + t2 = t2.subtract(vinf.shiftLeft(1)); + tm1 = tm1.subtract(t2); + + // Number of bits to shift left. + int ss = k*32; + + BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); + + if (a.signum != b.signum) { + return result.negate(); + } else { + return result; + } + } + + + /** + * Returns a slice of a BigInteger for use in Toom-Cook multiplication. + * + * @param lowerSize The size of the lower-order bit slices. + * @param upperSize The size of the higher-order bit slices. + * @param slice The index of which slice is requested, which must be a + * number from 0 to size-1. Slice 0 is the highest-order bits, and slice + * size-1 are the lowest-order bits. Slice 0 may be of different size than + * the other slices. + * @param fullsize The size of the larger integer array, used to align + * slices to the appropriate position when multiplying different-sized + * numbers. + */ + private BigInteger getToomSlice(int lowerSize, int upperSize, int slice, + int fullsize) { + int start, end, sliceSize, len, offset; + + len = mag.length; + offset = fullsize - len; + + if (slice == 0) { + start = 0 - offset; + end = upperSize - 1 - offset; + } else { + start = upperSize + (slice-1)*lowerSize - offset; + end = start + lowerSize - 1; + } + + if (start < 0) { + start = 0; + } + if (end < 0) { + return ZERO; + } + + sliceSize = (end-start) + 1; + + if (sliceSize <= 0) { + return ZERO; + } + + // While performing Toom-Cook, all slices are positive and + // the sign is adjusted when the final number is composed. + if (start == 0 && sliceSize >= len) { + return this.abs(); + } + + int intSlice[] = new int[sliceSize]; + System.arraycopy(mag, start, intSlice, 0, sliceSize); + + return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1); + } + + /** + * Does an exact division (that is, the remainder is known to be zero) + * of the specified number by 3. This is used in Toom-Cook + * multiplication. This is an efficient algorithm that runs in linear + * time. If the argument is not exactly divisible by 3, results are + * undefined. Note that this is expected to be called with positive + * arguments only. + */ + private BigInteger exactDivideBy3() { + int len = mag.length; + int[] result = new int[len]; + long x, w, q, borrow; + borrow = 0L; + for (int i=len-1; i >= 0; i--) { + x = (mag[i] & LONG_MASK); + w = x - borrow; + if (borrow > x) { // Did we make the number go negative? + borrow = 1L; + } else { + borrow = 0L; + } + + // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus, + // the effect of this is to divide by 3 (mod 2^32). + // This is much faster than division on most architectures. + q = (w * 0xAAAAAAABL) & LONG_MASK; + result[i] = (int) q; + + // Now check the borrow. The second check can of course be + // eliminated if the first fails. + if (q >= 0x55555556L) { + borrow++; + if (q >= 0xAAAAAAABL) + borrow++; + } + } + result = trustedStripLeadingZeroInts(result); + return new BigInteger(result, signum); + } + + /** + * Returns a new BigInteger representing n lower ints of the number. + * This is used by Karatsuba multiplication and Karatsuba squaring. + */ + private BigInteger getLower(int n) { + int len = mag.length; + + if (len <= n) { + return abs(); + } + + int lowerInts[] = new int[n]; + System.arraycopy(mag, len-n, lowerInts, 0, n); + + return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1); + } + + /** + * Returns a new BigInteger representing mag.length-n upper + * ints of the number. This is used by Karatsuba multiplication and + * Karatsuba squaring. + */ + private BigInteger getUpper(int n) { + int len = mag.length; + + if (len <= n) { + return ZERO; + } + + int upperLen = len - n; + int upperInts[] = new int[upperLen]; + System.arraycopy(mag, 0, upperInts, 0, upperLen); + + return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1); + } + + // Squaring + + /** + * Returns a BigInteger whose value is {@code (this2)}. + * + * @return {@code this2} + */ + private BigInteger square() { + return square(false); + } + + /** + * Returns a BigInteger whose value is {@code (this2)}. If + * the invocation is recursive certain overflow checks are skipped. + * + * @param isRecursion whether this is a recursive invocation + * @return {@code this2} + */ + private BigInteger square(boolean isRecursion) { + if (signum == 0) { + return ZERO; + } + int len = mag.length; + + if (len < KARATSUBA_SQUARE_THRESHOLD) { + int[] z = squareToLen(mag, len, null); + return new BigInteger(trustedStripLeadingZeroInts(z), 1); + } else { + if (len < TOOM_COOK_SQUARE_THRESHOLD) { + return squareKaratsuba(); + } else { + // + // For a discussion of overflow detection see multiply() + // + if (!isRecursion) { + if (bitLength(mag, mag.length) > 16L*MAX_MAG_LENGTH) { + reportOverflow(); + } + } + + return squareToomCook3(); + } + } + } + + /** + * Squares the contents of the int array x. The result is placed into the + * int array z. The contents of x are not changed. + */ + private static final int[] squareToLen(int[] x, int len, int[] z) { + int zlen = len << 1; + if (z == null || z.length < zlen) + z = new int[zlen]; + + // Execute checks before calling intrinsified method. + implSquareToLenChecks(x, len, z, zlen); + return implSquareToLen(x, len, z, zlen); + } + + /** + * Parameters validation. + */ + private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException { + if (len < 1) { + throw new IllegalArgumentException("invalid input length: " + len); + } + if (len > x.length) { + throw new IllegalArgumentException("input length out of bound: " + + len + " > " + x.length); + } + if (len * 2 > z.length) { + throw new IllegalArgumentException("input length out of bound: " + + (len * 2) + " > " + z.length); + } + if (zlen < 1) { + throw new IllegalArgumentException("invalid input length: " + zlen); + } + if (zlen > z.length) { + throw new IllegalArgumentException("input length out of bound: " + + len + " > " + z.length); + } + } + + /** + * Java Runtime may use intrinsic for this method. + */ + // @IntrinsicCandidate + private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) { + /* + * The algorithm used here is adapted from Colin Plumb's C library. + * Technique: Consider the partial products in the multiplication + * of "abcde" by itself: + * + * a b c d e + * * a b c d e + * ================== + * ae be ce de ee + * ad bd cd dd de + * ac bc cc cd ce + * ab bb bc bd be + * aa ab ac ad ae + * + * Note that everything above the main diagonal: + * ae be ce de = (abcd) * e + * ad bd cd = (abc) * d + * ac bc = (ab) * c + * ab = (a) * b + * + * is a copy of everything below the main diagonal: + * de + * cd ce + * bc bd be + * ab ac ad ae + * + * Thus, the sum is 2 * (off the diagonal) + diagonal. + * + * This is accumulated beginning with the diagonal (which + * consist of the squares of the digits of the input), which is then + * divided by two, the off-diagonal added, and multiplied by two + * again. The low bit is simply a copy of the low bit of the + * input, so it doesn't need special care. + */ + + // Store the squares, right shifted one bit (i.e., divided by 2) + int lastProductLowWord = 0; + for (int j=0, i=0; j < len; j++) { + long piece = (x[j] & LONG_MASK); + long product = piece * piece; + z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33); + z[i++] = (int)(product >>> 1); + lastProductLowWord = (int)product; + } + + // Add in off-diagonal sums + for (int i=len, offset=1; i > 0; i--, offset+=2) { + int t = x[i-1]; + t = mulAdd(z, x, offset, i-1, t); + addOne(z, offset-1, i, t); + } + + // Shift back up and set low bit + primitiveLeftShift(z, zlen, 1); + z[zlen-1] |= x[len-1] & 1; + + return z; + } + + /** + * Squares a BigInteger using the Karatsuba squaring algorithm. It should + * be used when both numbers are larger than a certain threshold (found + * experimentally). It is a recursive divide-and-conquer algorithm that + * has better asymptotic performance than the algorithm used in + * squareToLen. + */ + private BigInteger squareKaratsuba() { + int half = (mag.length+1) / 2; + + BigInteger xl = getLower(half); + BigInteger xh = getUpper(half); + + BigInteger xhs = xh.square(); // xhs = xh^2 + BigInteger xls = xl.square(); // xls = xl^2 + + // xh^2 << 64 + (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2 + return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls); + } + + /** + * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It + * should be used when both numbers are larger than a certain threshold + * (found experimentally). It is a recursive divide-and-conquer algorithm + * that has better asymptotic performance than the algorithm used in + * squareToLen or squareKaratsuba. + */ + private BigInteger squareToomCook3() { + int len = mag.length; + + // k is the size (in ints) of the lower-order slices. + int k = (len+2)/3; // Equal to ceil(largest/3) + + // r is the size (in ints) of the highest-order slice. + int r = len - 2*k; + + // Obtain slices of the numbers. a2 is the most significant + // bits of the number, and a0 the least significant. + BigInteger a0, a1, a2; + a2 = getToomSlice(k, r, 0, len); + a1 = getToomSlice(k, r, 1, len); + a0 = getToomSlice(k, r, 2, len); + BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1; + + v0 = a0.square(true); + da1 = a2.add(a0); + vm1 = da1.subtract(a1).square(true); + da1 = da1.add(a1); + v1 = da1.square(true); + vinf = a2.square(true); + v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true); + + // The algorithm requires two divisions by 2 and one by 3. + // All divisions are known to be exact, that is, they do not produce + // remainders, and all results are positive. The divisions by 2 are + // implemented as right shifts which are relatively efficient, leaving + // only a division by 3. + // The division by 3 is done by an optimized algorithm for this case. + t2 = v2.subtract(vm1).exactDivideBy3(); + tm1 = v1.subtract(vm1).shiftRight(1); + t1 = v1.subtract(v0); + t2 = t2.subtract(t1).shiftRight(1); + t1 = t1.subtract(tm1).subtract(vinf); + t2 = t2.subtract(vinf.shiftLeft(1)); + tm1 = tm1.subtract(t2); + + // Number of bits to shift left. + int ss = k*32; + + return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); + } + + // Division + + /** + * Returns a BigInteger whose value is {@code (this / val)}. + * + * @param val value by which this BigInteger is to be divided. + * @return {@code this / val} + * @throws ArithmeticException if {@code val} is zero. + */ + public BigInteger divide(BigInteger val) { + if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || + mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { + return divideKnuth(val); + } else { + return divideBurnikelZiegler(val); + } + } + + /** + * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth. + * + * @param val value by which this BigInteger is to be divided. + * @return {@code this / val} + * @throws ArithmeticException if {@code val} is zero. + * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean) + */ + private BigInteger divideKnuth(BigInteger val) { + MutableBigInteger q = new MutableBigInteger(), + a = new MutableBigInteger(this.mag), + b = new MutableBigInteger(val.mag); + + a.divideKnuth(b, q, false); + return q.toBigInteger(this.signum * val.signum); + } + + /** + * Returns an array of two BigIntegers containing {@code (this / val)} + * followed by {@code (this % val)}. + * + * @param val value by which this BigInteger is to be divided, and the + * remainder computed. + * @return an array of two BigIntegers: the quotient {@code (this / val)} + * is the initial element, and the remainder {@code (this % val)} + * is the final element. + * @throws ArithmeticException if {@code val} is zero. + */ + public BigInteger[] divideAndRemainder(BigInteger val) { + if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || + mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { + return divideAndRemainderKnuth(val); + } else { + return divideAndRemainderBurnikelZiegler(val); + } + } + + /** Long division */ + private BigInteger[] divideAndRemainderKnuth(BigInteger val) { + BigInteger[] result = new BigInteger[2]; + MutableBigInteger q = new MutableBigInteger(), + a = new MutableBigInteger(this.mag), + b = new MutableBigInteger(val.mag); + MutableBigInteger r = a.divideKnuth(b, q); + result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1); + result[1] = r.toBigInteger(this.signum); + return result; + } + + /** + * Returns a BigInteger whose value is {@code (this % val)}. + * + * @param val value by which this BigInteger is to be divided, and the + * remainder computed. + * @return {@code this % val} + * @throws ArithmeticException if {@code val} is zero. + */ + public BigInteger remainder(BigInteger val) { + if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || + mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { + return remainderKnuth(val); + } else { + return remainderBurnikelZiegler(val); + } + } + + /** Long division */ + private BigInteger remainderKnuth(BigInteger val) { + MutableBigInteger q = new MutableBigInteger(), + a = new MutableBigInteger(this.mag), + b = new MutableBigInteger(val.mag); + + return a.divideKnuth(b, q).toBigInteger(this.signum); + } + + /** + * Calculates {@code this / val} using the Burnikel-Ziegler algorithm. + * @param val the divisor + * @return {@code this / val} + */ + private BigInteger divideBurnikelZiegler(BigInteger val) { + return divideAndRemainderBurnikelZiegler(val)[0]; + } + + /** + * Calculates {@code this % val} using the Burnikel-Ziegler algorithm. + * @param val the divisor + * @return {@code this % val} + */ + private BigInteger remainderBurnikelZiegler(BigInteger val) { + return divideAndRemainderBurnikelZiegler(val)[1]; + } + + /** + * Computes {@code this / val} and {@code this % val} using the + * Burnikel-Ziegler algorithm. + * @param val the divisor + * @return an array containing the quotient and remainder + */ + private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) { + MutableBigInteger q = new MutableBigInteger(); + MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q); + BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum); + BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum); + return new BigInteger[] {qBigInt, rBigInt}; + } + + /** + * Returns a BigInteger whose value is (thisexponent). + * Note that {@code exponent} is an integer rather than a BigInteger. + * + * @param exponent exponent to which this BigInteger is to be raised. + * @return thisexponent + * @throws ArithmeticException {@code exponent} is negative. (This would + * cause the operation to yield a non-integer value.) + */ + public BigInteger pow(int exponent) { + if (exponent < 0) { + throw new ArithmeticException("Negative exponent"); + } + if (signum == 0) { + return (exponent == 0 ? ONE : this); + } + + BigInteger partToSquare = this.abs(); + + // Factor out powers of two from the base, as the exponentiation of + // these can be done by left shifts only. + // The remaining part can then be exponentiated faster. The + // powers of two will be multiplied back at the end. + int powersOfTwo = partToSquare.getLowestSetBit(); + long bitsToShiftLong = (long)powersOfTwo * exponent; + if (bitsToShiftLong > Integer.MAX_VALUE) { + reportOverflow(); + } + int bitsToShift = (int)bitsToShiftLong; + + int remainingBits; + + // Factor the powers of two out quickly by shifting right, if needed. + if (powersOfTwo > 0) { + partToSquare = partToSquare.shiftRight(powersOfTwo); + remainingBits = partToSquare.bitLength(); + if (remainingBits == 1) { // Nothing left but +/- 1? + if (signum < 0 && (exponent&1) == 1) { + return NEGATIVE_ONE.shiftLeft(bitsToShift); + } else { + return ONE.shiftLeft(bitsToShift); + } + } + } else { + remainingBits = partToSquare.bitLength(); + if (remainingBits == 1) { // Nothing left but +/- 1? + if (signum < 0 && (exponent&1) == 1) { + return NEGATIVE_ONE; + } else { + return ONE; + } + } + } + + // This is a quick way to approximate the size of the result, + // similar to doing log2[n] * exponent. This will give an upper bound + // of how big the result can be, and which algorithm to use. + long scaleFactor = (long)remainingBits * exponent; + + // Use slightly different algorithms for small and large operands. + // See if the result will safely fit into a long. (Largest 2^63-1) + if (partToSquare.mag.length == 1 && scaleFactor <= 62) { + // Small number algorithm. Everything fits into a long. + int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1); + long result = 1; + long baseToPow2 = partToSquare.mag[0] & LONG_MASK; + + int workingExponent = exponent; + + // Perform exponentiation using repeated squaring trick + while (workingExponent != 0) { + if ((workingExponent & 1) == 1) { + result = result * baseToPow2; + } + + if ((workingExponent >>>= 1) != 0) { + baseToPow2 = baseToPow2 * baseToPow2; + } + } + + // Multiply back the powers of two (quickly, by shifting left) + if (powersOfTwo > 0) { + if (bitsToShift + scaleFactor <= 62) { // Fits in long? + return valueOf((result << bitsToShift) * newSign); + } else { + return valueOf(result*newSign).shiftLeft(bitsToShift); + } + } else { + return valueOf(result*newSign); + } + } else { + if ((long)bitLength() * exponent / Integer.SIZE > MAX_MAG_LENGTH) { + reportOverflow(); + } + + // Large number algorithm. This is basically identical to + // the algorithm above, but calls multiply() and square() + // which may use more efficient algorithms for large numbers. + BigInteger answer = ONE; + + int workingExponent = exponent; + // Perform exponentiation using repeated squaring trick + while (workingExponent != 0) { + if ((workingExponent & 1) == 1) { + answer = answer.multiply(partToSquare); + } + + if ((workingExponent >>>= 1) != 0) { + partToSquare = partToSquare.square(); + } + } + // Multiply back the (exponentiated) powers of two (quickly, + // by shifting left) + if (powersOfTwo > 0) { + answer = answer.shiftLeft(bitsToShift); + } + + if (signum < 0 && (exponent&1) == 1) { + return answer.negate(); + } else { + return answer; + } + } + } + + /** + * Returns the integer square root of this BigInteger. The integer square + * root of the corresponding mathematical integer {@code n} is the largest + * mathematical integer {@code s} such that {@code s*s <= n}. It is equal + * to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the + * real square root of {@code n} treated as a real. Note that the integer + * square root will be less than the real square root if the latter is not + * representable as an integral value. + * + * @return the integer square root of {@code this} + * @throws ArithmeticException if {@code this} is negative. (The square + * root of a negative integer {@code val} is + * {@code (i * sqrt(-val))} where i is the + * imaginary unit and is equal to + * {@code sqrt(-1)}.) + * @since 9 + */ + public BigInteger sqrt() { + if (this.signum < 0) { + throw new ArithmeticException("Negative BigInteger"); + } + + return new MutableBigInteger(this.mag).sqrt().toBigInteger(); + } + + /** + * Returns an array of two BigIntegers containing the integer square root + * {@code s} of {@code this} and its remainder {@code this - s*s}, + * respectively. + * + * @return an array of two BigIntegers with the integer square root at + * offset 0 and the remainder at offset 1 + * @throws ArithmeticException if {@code this} is negative. (The square + * root of a negative integer {@code val} is + * {@code (i * sqrt(-val))} where i is the + * imaginary unit and is equal to + * {@code sqrt(-1)}.) + * @see #sqrt() + * @since 9 + */ + public BigInteger[] sqrtAndRemainder() { + BigInteger s = sqrt(); + BigInteger r = this.subtract(s.square()); + assert r.compareTo(BigInteger.ZERO) >= 0; + return new BigInteger[] {s, r}; + } + + /** + * Returns a BigInteger whose value is the greatest common divisor of + * {@code abs(this)} and {@code abs(val)}. Returns 0 if + * {@code this == 0 && val == 0}. + * + * @param val value with which the GCD is to be computed. + * @return {@code GCD(abs(this), abs(val))} + */ + public BigInteger gcd(BigInteger val) { + if (val.signum == 0) + return this.abs(); + else if (this.signum == 0) + return val.abs(); + + MutableBigInteger a = new MutableBigInteger(this); + MutableBigInteger b = new MutableBigInteger(val); + + MutableBigInteger result = a.hybridGCD(b); + + return result.toBigInteger(1); + } + + /** + * Package private method to return bit length for an integer. + */ + static int bitLengthForInt(int n) { + return 32 - Integer.numberOfLeadingZeros(n); + } + + /** + * Left shift int array a up to len by n bits. Returns the array that + * results from the shift since space may have to be reallocated. + */ + private static int[] leftShift(int[] a, int len, int n) { + int nInts = n >>> 5; + int nBits = n&0x1F; + int bitsInHighWord = bitLengthForInt(a[0]); + + // If shift can be done without recopy, do so + if (n <= (32-bitsInHighWord)) { + primitiveLeftShift(a, len, nBits); + return a; + } else { // Array must be resized + if (nBits <= (32-bitsInHighWord)) { + int result[] = new int[nInts+len]; + System.arraycopy(a, 0, result, 0, len); + primitiveLeftShift(result, result.length, nBits); + return result; + } else { + int result[] = new int[nInts+len+1]; + System.arraycopy(a, 0, result, 0, len); + primitiveRightShift(result, result.length, 32 - nBits); + return result; + } + } + } + + // shifts a up to len right n bits assumes no leading zeros, 0>>= n; + } + + // shifts a up to len left n bits assumes no leading zeros, 0<=n<32 + static void primitiveLeftShift(int[] a, int len, int n) { + if (len == 0 || n == 0) + return; + Objects.checkFromToIndex(0, len, a.length); + shiftLeftImplWorker(a, a, 0, n, len-1); + a[len-1] <<= n; + } + + /** + * Calculate bitlength of contents of the first len elements an int array, + * assuming there are no leading zero ints. + */ + private static int bitLength(int[] val, int len) { + if (len == 0) + return 0; + return ((len - 1) << 5) + bitLengthForInt(val[0]); + } + + /** + * Returns a BigInteger whose value is the absolute value of this + * BigInteger. + * + * @return {@code abs(this)} + */ + public BigInteger abs() { + return (signum >= 0 ? this : this.negate()); + } + + /** + * Returns a BigInteger whose value is {@code (-this)}. + * + * @return {@code -this} + */ + public BigInteger negate() { + return new BigInteger(this.mag, -this.signum); + } + + /** + * Returns the signum function of this BigInteger. + * + * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or + * positive. + */ + public int signum() { + return this.signum; + } + + // Modular Arithmetic Operations + + /** + * Returns a BigInteger whose value is {@code (this mod m}). This method + * differs from {@code remainder} in that it always returns a + * non-negative BigInteger. + * + * @param m the modulus. + * @return {@code this mod m} + * @throws ArithmeticException {@code m} ≤ 0 + * @see #remainder + */ + public BigInteger mod(BigInteger m) { + if (m.signum <= 0) + throw new ArithmeticException("BigInteger: modulus not positive"); + + BigInteger result = this.remainder(m); + return (result.signum >= 0 ? result : result.add(m)); + } + + /** + * Returns a BigInteger whose value is + * (thisexponent mod m). (Unlike {@code pow}, this + * method permits negative exponents.) + * + * @param exponent the exponent. + * @param m the modulus. + * @return thisexponent mod m + * @throws ArithmeticException {@code m} ≤ 0 or the exponent is + * negative and this BigInteger is not relatively + * prime to {@code m}. + * @see #modInverse + */ + public BigInteger modPow(BigInteger exponent, BigInteger m) { + if (m.signum <= 0) + throw new ArithmeticException("BigInteger: modulus not positive"); + + // Trivial cases + if (exponent.signum == 0) + return (m.equals(ONE) ? ZERO : ONE); + + if (this.equals(ONE)) + return (m.equals(ONE) ? ZERO : ONE); + + if (this.equals(ZERO) && exponent.signum >= 0) + return ZERO; + + if (this.equals(negConst[1]) && (!exponent.testBit(0))) + return (m.equals(ONE) ? ZERO : ONE); + + boolean invertResult; + if ((invertResult = (exponent.signum < 0))) + exponent = exponent.negate(); + + BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0 + ? this.mod(m) : this); + BigInteger result; + if (m.testBit(0)) { // odd modulus + result = base.oddModPow(exponent, m); + } else { + /* + * Even modulus. Tear it into an "odd part" (m1) and power of two + * (m2), exponentiate mod m1, manually exponentiate mod m2, and + * use Chinese Remainder Theorem to combine results. + */ + + // Tear m apart into odd part (m1) and power of 2 (m2) + int p = m.getLowestSetBit(); // Max pow of 2 that divides m + + BigInteger m1 = m.shiftRight(p); // m/2**p + BigInteger m2 = ONE.shiftLeft(p); // 2**p + + // Calculate new base from m1 + BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0 + ? this.mod(m1) : this); + + // Calculate (base ** exponent) mod m1. + BigInteger a1 = (m1.equals(ONE) ? ZERO : + base2.oddModPow(exponent, m1)); + + // Calculate (this ** exponent) mod m2 + BigInteger a2 = base.modPow2(exponent, p); + + // Combine results using Chinese Remainder Theorem + BigInteger y1 = m2.modInverse(m1); + BigInteger y2 = m1.modInverse(m2); + + if (m.mag.length < MAX_MAG_LENGTH / 2) { + result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m); + } else { + MutableBigInteger t1 = new MutableBigInteger(); + new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1); + MutableBigInteger t2 = new MutableBigInteger(); + new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2); + t1.add(t2); + MutableBigInteger q = new MutableBigInteger(); + result = t1.divide(new MutableBigInteger(m), q).toBigInteger(); + } + } + + return (invertResult ? result.modInverse(m) : result); + } + + // Montgomery multiplication. These are wrappers for + // implMontgomeryXX routines which are expected to be replaced by + // virtual machine intrinsics. We don't use the intrinsics for + // very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be + // larger than any reasonable crypto key. + private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv, + int[] product) { + implMontgomeryMultiplyChecks(a, b, n, len, product); + if (len > MONTGOMERY_INTRINSIC_THRESHOLD) { + // Very long argument: do not use an intrinsic + product = multiplyToLen(a, len, b, len, product); + return montReduce(product, n, len, (int)inv); + } else { + return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len)); + } + } + private static int[] montgomerySquare(int[] a, int[] n, int len, long inv, + int[] product) { + implMontgomeryMultiplyChecks(a, a, n, len, product); + if (len > MONTGOMERY_INTRINSIC_THRESHOLD) { + // Very long argument: do not use an intrinsic + product = squareToLen(a, len, product); + return montReduce(product, n, len, (int)inv); + } else { + return implMontgomerySquare(a, n, len, inv, materialize(product, len)); + } + } + + // Range-check everything. + private static void implMontgomeryMultiplyChecks + (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException { + if (len % 2 != 0) { + throw new IllegalArgumentException("input array length must be even: " + len); + } + + if (len < 1) { + throw new IllegalArgumentException("invalid input length: " + len); + } + + if (len > a.length || + len > b.length || + len > n.length || + (product != null && len > product.length)) { + throw new IllegalArgumentException("input array length out of bound: " + len); + } + } + + // Make sure that the int array z (which is expected to contain + // the result of a Montgomery multiplication) is present and + // sufficiently large. + private static int[] materialize(int[] z, int len) { + if (z == null || z.length < len) + z = new int[len]; + return z; + } + + // These methods are intended to be replaced by virtual machine + // intrinsics. + // @IntrinsicCandidate + private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len, + long inv, int[] product) { + product = multiplyToLen(a, len, b, len, product); + return montReduce(product, n, len, (int)inv); + } + // @IntrinsicCandidate + private static int[] implMontgomerySquare(int[] a, int[] n, int len, + long inv, int[] product) { + product = squareToLen(a, len, product); + return montReduce(product, n, len, (int)inv); + } + + static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793, + Integer.MAX_VALUE}; // Sentinel + + /** + * Returns a BigInteger whose value is x to the power of y mod z. + * Assumes: z is odd && x < z. + */ + private BigInteger oddModPow(BigInteger y, BigInteger z) { + /* + * The algorithm is adapted from Colin Plumb's C library. + * + * The window algorithm: + * The idea is to keep a running product of b1 = n^(high-order bits of exp) + * and then keep appending exponent bits to it. The following patterns + * apply to a 3-bit window (k = 3): + * To append 0: square + * To append 1: square, multiply by n^1 + * To append 10: square, multiply by n^1, square + * To append 11: square, square, multiply by n^3 + * To append 100: square, multiply by n^1, square, square + * To append 101: square, square, square, multiply by n^5 + * To append 110: square, square, multiply by n^3, square + * To append 111: square, square, square, multiply by n^7 + * + * Since each pattern involves only one multiply, the longer the pattern + * the better, except that a 0 (no multiplies) can be appended directly. + * We precompute a table of odd powers of n, up to 2^k, and can then + * multiply k bits of exponent at a time. Actually, assuming random + * exponents, there is on average one zero bit between needs to + * multiply (1/2 of the time there's none, 1/4 of the time there's 1, + * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so + * you have to do one multiply per k+1 bits of exponent. + * + * The loop walks down the exponent, squaring the result buffer as + * it goes. There is a wbits+1 bit lookahead buffer, buf, that is + * filled with the upcoming exponent bits. (What is read after the + * end of the exponent is unimportant, but it is filled with zero here.) + * When the most-significant bit of this buffer becomes set, i.e. + * (buf & tblmask) != 0, we have to decide what pattern to multiply + * by, and when to do it. We decide, remember to do it in future + * after a suitable number of squarings have passed (e.g. a pattern + * of "100" in the buffer requires that we multiply by n^1 immediately; + * a pattern of "110" calls for multiplying by n^3 after one more + * squaring), clear the buffer, and continue. + * + * When we start, there is one more optimization: the result buffer + * is implcitly one, so squaring it or multiplying by it can be + * optimized away. Further, if we start with a pattern like "100" + * in the lookahead window, rather than placing n into the buffer + * and then starting to square it, we have already computed n^2 + * to compute the odd-powers table, so we can place that into + * the buffer and save a squaring. + * + * This means that if you have a k-bit window, to compute n^z, + * where z is the high k bits of the exponent, 1/2 of the time + * it requires no squarings. 1/4 of the time, it requires 1 + * squaring, ... 1/2^(k-1) of the time, it requires k-2 squarings. + * And the remaining 1/2^(k-1) of the time, the top k bits are a + * 1 followed by k-1 0 bits, so it again only requires k-2 + * squarings, not k-1. The average of these is 1. Add that + * to the one squaring we have to do to compute the table, + * and you'll see that a k-bit window saves k-2 squarings + * as well as reducing the multiplies. (It actually doesn't + * hurt in the case k = 1, either.) + */ + // Special case for exponent of one + if (y.equals(ONE)) + return this; + + // Special case for base of zero + if (signum == 0) + return ZERO; + + int[] base = mag.clone(); + int[] exp = y.mag; + int[] mod = z.mag; + int modLen = mod.length; + + // Make modLen even. It is conventional to use a cryptographic + // modulus that is 512, 768, 1024, or 2048 bits, so this code + // will not normally be executed. However, it is necessary for + // the correct functioning of the HotSpot intrinsics. + if ((modLen & 1) != 0) { + int[] x = new int[modLen + 1]; + System.arraycopy(mod, 0, x, 1, modLen); + mod = x; + modLen++; + } + + // Select an appropriate window size + int wbits = 0; + int ebits = bitLength(exp, exp.length); + // if exponent is 65537 (0x10001), use minimum window size + if ((ebits != 17) || (exp[0] != 65537)) { + while (ebits > bnExpModThreshTable[wbits]) { + wbits++; + } + } + + // Calculate appropriate table size + int tblmask = 1 << wbits; + + // Allocate table for precomputed odd powers of base in Montgomery form + int[][] table = new int[tblmask][]; + for (int i=0; i < tblmask; i++) + table[i] = new int[modLen]; + + // Compute the modular inverse of the least significant 64-bit + // digit of the modulus + long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32); + long inv = -MutableBigInteger.inverseMod64(n0); + + // Convert base to Montgomery form + int[] a = leftShift(base, base.length, modLen << 5); + + MutableBigInteger q = new MutableBigInteger(), + a2 = new MutableBigInteger(a), + b2 = new MutableBigInteger(mod); + b2.normalize(); // MutableBigInteger.divide() assumes that its + // divisor is in normal form. + + MutableBigInteger r= a2.divide(b2, q); + table[0] = r.toIntArray(); + + // Pad table[0] with leading zeros so its length is at least modLen + if (table[0].length < modLen) { + int offset = modLen - table[0].length; + int[] t2 = new int[modLen]; + System.arraycopy(table[0], 0, t2, offset, table[0].length); + table[0] = t2; + } + + // Set b to the square of the base + int[] b = montgomerySquare(table[0], mod, modLen, inv, null); + + // Set t to high half of b + int[] t = Arrays.copyOf(b, modLen); + + // Fill in the table with odd powers of the base + for (int i=1; i < tblmask; i++) { + table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null); + } + + // Pre load the window that slides over the exponent + int bitpos = 1 << ((ebits-1) & (32-1)); + + int buf = 0; + int elen = exp.length; + int eIndex = 0; + for (int i = 0; i <= wbits; i++) { + buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0); + bitpos >>>= 1; + if (bitpos == 0) { + eIndex++; + bitpos = 1 << (32-1); + elen--; + } + } + + int multpos = ebits; + + // The first iteration, which is hoisted out of the main loop + ebits--; + boolean isone = true; + + multpos = ebits - wbits; + while ((buf & 1) == 0) { + buf >>>= 1; + multpos++; + } + + int[] mult = table[buf >>> 1]; + + buf = 0; + if (multpos == ebits) + isone = false; + + // The main loop + while (true) { + ebits--; + // Advance the window + buf <<= 1; + + if (elen != 0) { + buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0; + bitpos >>>= 1; + if (bitpos == 0) { + eIndex++; + bitpos = 1 << (32-1); + elen--; + } + } + + // Examine the window for pending multiplies + if ((buf & tblmask) != 0) { + multpos = ebits - wbits; + while ((buf & 1) == 0) { + buf >>>= 1; + multpos++; + } + mult = table[buf >>> 1]; + buf = 0; + } + + // Perform multiply + if (ebits == multpos) { + if (isone) { + b = mult.clone(); + isone = false; + } else { + t = b; + a = montgomeryMultiply(t, mult, mod, modLen, inv, a); + t = a; a = b; b = t; + } + } + + // Check if done + if (ebits == 0) + break; + + // Square the input + if (!isone) { + t = b; + a = montgomerySquare(t, mod, modLen, inv, a); + t = a; a = b; b = t; + } + } + + // Convert result out of Montgomery form and return + int[] t2 = new int[2*modLen]; + System.arraycopy(b, 0, t2, modLen, modLen); + + b = montReduce(t2, mod, modLen, (int)inv); + + t2 = Arrays.copyOf(b, modLen); + + return new BigInteger(1, t2); + } + + /** + * Montgomery reduce n, modulo mod. This reduces modulo mod and divides + * by 2^(32*mlen). Adapted from Colin Plumb's C library. + */ + private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) { + int c=0; + int len = mlen; + int offset=0; + + do { + int nEnd = n[n.length-1-offset]; + int carry = mulAdd(n, mod, offset, mlen, inv * nEnd); + c += addOne(n, offset, mlen, carry); + offset++; + } while (--len > 0); + + while (c > 0) + c += subN(n, mod, mlen); + + while (intArrayCmpToLen(n, mod, mlen) >= 0) + subN(n, mod, mlen); + + return n; + } + + + /* + * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than, + * equal to, or greater than arg2 up to length len. + */ + private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) { + for (int i=0; i < len; i++) { + long b1 = arg1[i] & LONG_MASK; + long b2 = arg2[i] & LONG_MASK; + if (b1 < b2) + return -1; + if (b1 > b2) + return 1; + } + return 0; + } + + /** + * Subtracts two numbers of same length, returning borrow. + */ + private static int subN(int[] a, int[] b, int len) { + long sum = 0; + + while (--len >= 0) { + sum = (a[len] & LONG_MASK) - + (b[len] & LONG_MASK) + (sum >> 32); + a[len] = (int)sum; + } + + return (int)(sum >> 32); + } + + /** + * Multiply an array by one word k and add to result, return the carry + */ + static int mulAdd(int[] out, int[] in, int offset, int len, int k) { + implMulAddCheck(out, in, offset, len, k); + return implMulAdd(out, in, offset, len, k); + } + + /** + * Parameters validation. + */ + private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) { + if (len > in.length) { + throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length); + } + if (offset < 0) { + throw new IllegalArgumentException("input offset is invalid: " + offset); + } + if (offset > (out.length - 1)) { + throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1)); + } + if (len > (out.length - offset)) { + throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset)); + } + } + + /** + * Java Runtime may use intrinsic for this method. + */ + // @IntrinsicCandidate + private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) { + long kLong = k & LONG_MASK; + long carry = 0; + + offset = out.length-offset - 1; + for (int j=len-1; j >= 0; j--) { + long product = (in[j] & LONG_MASK) * kLong + + (out[offset] & LONG_MASK) + carry; + out[offset--] = (int)product; + carry = product >>> 32; + } + return (int)carry; + } + + /** + * Add one word to the number a mlen words into a. Return the resulting + * carry. + */ + static int addOne(int[] a, int offset, int mlen, int carry) { + offset = a.length-1-mlen-offset; + long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK); + + a[offset] = (int)t; + if ((t >>> 32) == 0) + return 0; + while (--mlen >= 0) { + if (--offset < 0) { // Carry out of number + return 1; + } else { + a[offset]++; + if (a[offset] != 0) + return 0; + } + } + return 1; + } + + /** + * Returns a BigInteger whose value is (this ** exponent) mod (2**p) + */ + private BigInteger modPow2(BigInteger exponent, int p) { + /* + * Perform exponentiation using repeated squaring trick, chopping off + * high order bits as indicated by modulus. + */ + BigInteger result = ONE; + BigInteger baseToPow2 = this.mod2(p); + int expOffset = 0; + + int limit = exponent.bitLength(); + + if (this.testBit(0)) + limit = (p-1) < limit ? (p-1) : limit; + + while (expOffset < limit) { + if (exponent.testBit(expOffset)) + result = result.multiply(baseToPow2).mod2(p); + expOffset++; + if (expOffset < limit) + baseToPow2 = baseToPow2.square().mod2(p); + } + + return result; + } + + /** + * Returns a BigInteger whose value is this mod(2**p). + * Assumes that this {@code BigInteger >= 0} and {@code p > 0}. + */ + private BigInteger mod2(int p) { + if (bitLength() <= p) + return this; + + // Copy remaining ints of mag + int numInts = (p + 31) >>> 5; + int[] mag = new int[numInts]; + System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts); + + // Mask out any excess bits + int excessBits = (numInts << 5) - p; + mag[0] &= (1L << (32-excessBits)) - 1; + + return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1)); + } + + /** + * Returns a BigInteger whose value is {@code (this}-1 {@code mod m)}. + * + * @param m the modulus. + * @return {@code this}-1 {@code mod m}. + * @throws ArithmeticException {@code m} ≤ 0, or this BigInteger + * has no multiplicative inverse mod m (that is, this BigInteger + * is not relatively prime to m). + */ + public BigInteger modInverse(BigInteger m) { + if (m.signum != 1) + throw new ArithmeticException("BigInteger: modulus not positive"); + + if (m.equals(ONE)) + return ZERO; + + // Calculate (this mod m) + BigInteger modVal = this; + if (signum < 0 || (this.compareMagnitude(m) >= 0)) + modVal = this.mod(m); + + if (modVal.equals(ONE)) + return ONE; + + MutableBigInteger a = new MutableBigInteger(modVal); + MutableBigInteger b = new MutableBigInteger(m); + + MutableBigInteger result = a.mutableModInverse(b); + return result.toBigInteger(1); + } + + // Shift Operations + + /** + * Returns a BigInteger whose value is {@code (this << n)}. + * The shift distance, {@code n}, may be negative, in which case + * this method performs a right shift. + * (Computes floor(this * 2n).) + * + * @param n shift distance, in bits. + * @return {@code this << n} + * @see #shiftRight + */ + public BigInteger shiftLeft(int n) { + if (signum == 0) + return ZERO; + if (n > 0) { + return new BigInteger(shiftLeft(mag, n), signum); + } else if (n == 0) { + return this; + } else { + // Possible int overflow in (-n) is not a trouble, + // because shiftRightImpl considers its argument unsigned + return shiftRightImpl(-n); + } + } + + /** + * Returns a magnitude array whose value is {@code (mag << n)}. + * The shift distance, {@code n}, is considered unnsigned. + * (Computes this * 2n.) + * + * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero. + * @param n unsigned shift distance, in bits. + * @return {@code mag << n} + */ + private static int[] shiftLeft(int[] mag, int n) { + int nInts = n >>> 5; + int nBits = n & 0x1f; + int magLen = mag.length; + int newMag[] = null; + + if (nBits == 0) { + newMag = new int[magLen + nInts]; + System.arraycopy(mag, 0, newMag, 0, magLen); + } else { + int i = 0; + int nBits2 = 32 - nBits; + int highBits = mag[0] >>> nBits2; + if (highBits != 0) { + newMag = new int[magLen + nInts + 1]; + newMag[i++] = highBits; + } else { + newMag = new int[magLen + nInts]; + } + int numIter = magLen - 1; + Objects.checkFromToIndex(0, numIter + 1, mag.length); + Objects.checkFromToIndex(i, numIter + i + 1, newMag.length); + shiftLeftImplWorker(newMag, mag, i, nBits, numIter); + newMag[numIter + i] = mag[numIter] << nBits; + } + return newMag; + } + + //@ForceInline + //@IntrinsicCandidate + private static void shiftLeftImplWorker(int[] newArr, int[] oldArr, int newIdx, int shiftCount, int numIter) { + int shiftCountRight = 32 - shiftCount; + int oldIdx = 0; + while (oldIdx < numIter) { + newArr[newIdx++] = (oldArr[oldIdx++] << shiftCount) | (oldArr[oldIdx] >>> shiftCountRight); + } + } + + /** + * Returns a BigInteger whose value is {@code (this >> n)}. Sign + * extension is performed. The shift distance, {@code n}, may be + * negative, in which case this method performs a left shift. + * (Computes floor(this / 2n).) + * + * @param n shift distance, in bits. + * @return {@code this >> n} + * @see #shiftLeft + */ + public BigInteger shiftRight(int n) { + if (signum == 0) + return ZERO; + if (n > 0) { + return shiftRightImpl(n); + } else if (n == 0) { + return this; + } else { + // Possible int overflow in {@code -n} is not a trouble, + // because shiftLeft considers its argument unsigned + return new BigInteger(shiftLeft(mag, -n), signum); + } + } + + /** + * Returns a BigInteger whose value is {@code (this >> n)}. The shift + * distance, {@code n}, is considered unsigned. + * (Computes floor(this * 2-n).) + * + * @param n unsigned shift distance, in bits. + * @return {@code this >> n} + */ + private BigInteger shiftRightImpl(int n) { + int nInts = n >>> 5; + int nBits = n & 0x1f; + int magLen = mag.length; + int newMag[] = null; + + // Special case: entire contents shifted off the end + if (nInts >= magLen) + return (signum >= 0 ? ZERO : negConst[1]); + + if (nBits == 0) { + int newMagLen = magLen - nInts; + newMag = Arrays.copyOf(mag, newMagLen); + } else { + int i = 0; + int highBits = mag[0] >>> nBits; + if (highBits != 0) { + newMag = new int[magLen - nInts]; + newMag[i++] = highBits; + } else { + newMag = new int[magLen - nInts -1]; + } + int numIter = magLen - nInts - 1; + Objects.checkFromToIndex(0, numIter + 1, mag.length); + Objects.checkFromToIndex(i, numIter + i, newMag.length); + shiftRightImplWorker(newMag, mag, i, nBits, numIter); + } + + if (signum < 0) { + // Find out whether any one-bits were shifted off the end. + boolean onesLost = false; + for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--) + onesLost = (mag[i] != 0); + if (!onesLost && nBits != 0) + onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0); + + if (onesLost) + newMag = javaIncrement(newMag); + } + + return new BigInteger(newMag, signum); + } + + //@ForceInline + //@IntrinsicCandidate + private static void shiftRightImplWorker(int[] newArr, int[] oldArr, int newIdx, int shiftCount, int numIter) { + int shiftCountLeft = 32 - shiftCount; + int idx = numIter; + int nidx = (newIdx == 0) ? numIter - 1 : numIter; + while (nidx >= newIdx) { + newArr[nidx--] = (oldArr[idx--] >>> shiftCount) | (oldArr[idx] << shiftCountLeft); + } + } + + int[] javaIncrement(int[] val) { + int lastSum = 0; + for (int i=val.length-1; i >= 0 && lastSum == 0; i--) + lastSum = (val[i] += 1); + if (lastSum == 0) { + val = new int[val.length+1]; + val[0] = 1; + } + return val; + } + + // Bitwise Operations + + /** + * Returns a BigInteger whose value is {@code (this & val)}. (This + * method returns a negative BigInteger if and only if this and val are + * both negative.) + * + * @param val value to be AND'ed with this BigInteger. + * @return {@code this & val} + */ + public BigInteger and(BigInteger val) { + int[] result = new int[Math.max(intLength(), val.intLength())]; + for (int i=0; i < result.length; i++) + result[i] = (getInt(result.length-i-1) + & val.getInt(result.length-i-1)); + + return valueOf(result); + } + + /** + * Returns a BigInteger whose value is {@code (this | val)}. (This method + * returns a negative BigInteger if and only if either this or val is + * negative.) + * + * @param val value to be OR'ed with this BigInteger. + * @return {@code this | val} + */ + public BigInteger or(BigInteger val) { + int[] result = new int[Math.max(intLength(), val.intLength())]; + for (int i=0; i < result.length; i++) + result[i] = (getInt(result.length-i-1) + | val.getInt(result.length-i-1)); + + return valueOf(result); + } + + /** + * Returns a BigInteger whose value is {@code (this ^ val)}. (This method + * returns a negative BigInteger if and only if exactly one of this and + * val are negative.) + * + * @param val value to be XOR'ed with this BigInteger. + * @return {@code this ^ val} + */ + public BigInteger xor(BigInteger val) { + int[] result = new int[Math.max(intLength(), val.intLength())]; + for (int i=0; i < result.length; i++) + result[i] = (getInt(result.length-i-1) + ^ val.getInt(result.length-i-1)); + + return valueOf(result); + } + + /** + * Returns a BigInteger whose value is {@code (~this)}. (This method + * returns a negative value if and only if this BigInteger is + * non-negative.) + * + * @return {@code ~this} + */ + public BigInteger not() { + int[] result = new int[intLength()]; + for (int i=0; i < result.length; i++) + result[i] = ~getInt(result.length-i-1); + + return valueOf(result); + } + + /** + * Returns a BigInteger whose value is {@code (this & ~val)}. This + * method, which is equivalent to {@code and(val.not())}, is provided as + * a convenience for masking operations. (This method returns a negative + * BigInteger if and only if {@code this} is negative and {@code val} is + * positive.) + * + * @param val value to be complemented and AND'ed with this BigInteger. + * @return {@code this & ~val} + */ + public BigInteger andNot(BigInteger val) { + int[] result = new int[Math.max(intLength(), val.intLength())]; + for (int i=0; i < result.length; i++) + result[i] = (getInt(result.length-i-1) + & ~val.getInt(result.length-i-1)); + + return valueOf(result); + } + + + // Single Bit Operations + + /** + * Returns {@code true} if and only if the designated bit is set. + * (Computes {@code ((this & (1<>> 5) & (1 << (n & 31))) != 0; + } + + /** + * Returns a BigInteger whose value is equivalent to this BigInteger + * with the designated bit set. (Computes {@code (this | (1<>> 5; + int[] result = new int[Math.max(intLength(), intNum+2)]; + + for (int i=0; i < result.length; i++) + result[result.length-i-1] = getInt(i); + + result[result.length-intNum-1] |= (1 << (n & 31)); + + return valueOf(result); + } + + /** + * Returns a BigInteger whose value is equivalent to this BigInteger + * with the designated bit cleared. + * (Computes {@code (this & ~(1<>> 5; + int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)]; + + for (int i=0; i < result.length; i++) + result[result.length-i-1] = getInt(i); + + result[result.length-intNum-1] &= ~(1 << (n & 31)); + + return valueOf(result); + } + + /** + * Returns a BigInteger whose value is equivalent to this BigInteger + * with the designated bit flipped. + * (Computes {@code (this ^ (1<>> 5; + int[] result = new int[Math.max(intLength(), intNum+2)]; + + for (int i=0; i < result.length; i++) + result[result.length-i-1] = getInt(i); + + result[result.length-intNum-1] ^= (1 << (n & 31)); + + return valueOf(result); + } + + /** + * Returns the index of the rightmost (lowest-order) one bit in this + * BigInteger (the number of zero bits to the right of the rightmost + * one bit). Returns -1 if this BigInteger contains no one bits. + * (Computes {@code (this == 0? -1 : log2(this & -this))}.) + * + * @return index of the rightmost one bit in this BigInteger. + */ + public int getLowestSetBit() { + int lsb = lowestSetBitPlusTwo - 2; + if (lsb == -2) { // lowestSetBit not initialized yet + lsb = 0; + if (signum == 0) { + lsb -= 1; + } else { + // Search for lowest order nonzero int + int i,b; + for (i=0; (b = getInt(i)) == 0; i++) + ; + lsb += (i << 5) + Integer.numberOfTrailingZeros(b); + } + lowestSetBitPlusTwo = lsb + 2; + } + return lsb; + } + + + // Miscellaneous Bit Operations + + /** + * Returns the number of bits in the minimal two's-complement + * representation of this BigInteger, excluding a sign bit. + * For positive BigIntegers, this is equivalent to the number of bits in + * the ordinary binary representation. For zero this method returns + * {@code 0}. (Computes {@code (ceil(log2(this < 0 ? -this : this+1)))}.) + * + * @return number of bits in the minimal two's-complement + * representation of this BigInteger, excluding a sign bit. + */ + public int bitLength() { + int n = bitLengthPlusOne - 1; + if (n == -1) { // bitLength not initialized yet + int[] m = mag; + int len = m.length; + if (len == 0) { + n = 0; // offset by one to initialize + } else { + // Calculate the bit length of the magnitude + int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]); + if (signum < 0) { + // Check if magnitude is a power of two + boolean pow2 = (Integer.bitCount(mag[0]) == 1); + for (int i=1; i< len && pow2; i++) + pow2 = (mag[i] == 0); + + n = (pow2 ? magBitLength - 1 : magBitLength); + } else { + n = magBitLength; + } + } + bitLengthPlusOne = n + 1; + } + return n; + } + + /** + * Returns the number of bits in the two's complement representation + * of this BigInteger that differ from its sign bit. This method is + * useful when implementing bit-vector style sets atop BigIntegers. + * + * @return number of bits in the two's complement representation + * of this BigInteger that differ from its sign bit. + */ + public int bitCount() { + int bc = bitCountPlusOne - 1; + if (bc == -1) { // bitCount not initialized yet + bc = 0; // offset by one to initialize + // Count the bits in the magnitude + for (int i=0; i < mag.length; i++) + bc += Integer.bitCount(mag[i]); + if (signum < 0) { + // Count the trailing zeros in the magnitude + int magTrailingZeroCount = 0, j; + for (j=mag.length-1; mag[j] == 0; j--) + magTrailingZeroCount += 32; + magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]); + bc += magTrailingZeroCount - 1; + } + bitCountPlusOne = bc + 1; + } + return bc; + } + + // Comparison Operations + + /** + * Compares this BigInteger with the specified BigInteger. This + * method is provided in preference to individual methods for each + * of the six boolean comparison operators ({@literal <}, ==, + * {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested + * idiom for performing these comparisons is: {@code + * (x.compareTo(y)} <op> {@code 0)}, where + * <op> is one of the six comparison operators. + * + * @param val BigInteger to which this BigInteger is to be compared. + * @return -1, 0 or 1 as this BigInteger is numerically less than, equal + * to, or greater than {@code val}. + */ + public int compareTo(BigInteger val) { + if (signum == val.signum) { + return switch (signum) { + case 1 -> compareMagnitude(val); + case -1 -> val.compareMagnitude(this); + default -> 0; + }; + } + return signum > val.signum ? 1 : -1; + } + + /** + * Compares the magnitude array of this BigInteger with the specified + * BigInteger's. This is the version of compareTo ignoring sign. + * + * @param val BigInteger whose magnitude array to be compared. + * @return -1, 0 or 1 as this magnitude array is less than, equal to or + * greater than the magnitude aray for the specified BigInteger's. + */ + final int compareMagnitude(BigInteger val) { + int[] m1 = mag; + int len1 = m1.length; + int[] m2 = val.mag; + int len2 = m2.length; + if (len1 < len2) + return -1; + if (len1 > len2) + return 1; + for (int i = 0; i < len1; i++) { + int a = m1[i]; + int b = m2[i]; + if (a != b) + return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1; + } + return 0; + } + + /** + * Version of compareMagnitude that compares magnitude with long value. + * val can't be Long.MIN_VALUE. + */ + final int compareMagnitude(long val) { + assert val != Long.MIN_VALUE; + int[] m1 = mag; + int len = m1.length; + if (len > 2) { + return 1; + } + if (val < 0) { + val = -val; + } + int highWord = (int)(val >>> 32); + if (highWord == 0) { + if (len < 1) + return -1; + if (len > 1) + return 1; + int a = m1[0]; + int b = (int)val; + if (a != b) { + return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; + } + return 0; + } else { + if (len < 2) + return -1; + int a = m1[0]; + int b = highWord; + if (a != b) { + return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; + } + a = m1[1]; + b = (int)val; + if (a != b) { + return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; + } + return 0; + } + } + + /** + * Compares this BigInteger with the specified Object for equality. + * + * @param x Object to which this BigInteger is to be compared. + * @return {@code true} if and only if the specified Object is a + * BigInteger whose value is numerically equal to this BigInteger. + */ + public boolean equals(Object x) { + // This test is just an optimization, which may or may not help + if (x == this) + return true; + + if (!(x instanceof BigInteger xInt)) + return false; + + if (xInt.signum != signum) + return false; + + int[] m = mag; + int len = m.length; + int[] xm = xInt.mag; + if (len != xm.length) + return false; + + for (int i = 0; i < len; i++) + if (xm[i] != m[i]) + return false; + + return true; + } + + /** + * Returns the minimum of this BigInteger and {@code val}. + * + * @param val value with which the minimum is to be computed. + * @return the BigInteger whose value is the lesser of this BigInteger and + * {@code val}. If they are equal, either may be returned. + */ + public BigInteger min(BigInteger val) { + return (compareTo(val) < 0 ? this : val); + } + + /** + * Returns the maximum of this BigInteger and {@code val}. + * + * @param val value with which the maximum is to be computed. + * @return the BigInteger whose value is the greater of this and + * {@code val}. If they are equal, either may be returned. + */ + public BigInteger max(BigInteger val) { + return (compareTo(val) > 0 ? this : val); + } + + + // Hash Function + + /** + * Returns the hash code for this BigInteger. + * + * @return hash code for this BigInteger. + */ + public int hashCode() { + int hashCode = 0; + + for (int i=0; i < mag.length; i++) + hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK)); + + return hashCode * signum; + } + + /** + * Returns the String representation of this BigInteger in the + * given radix. If the radix is outside the range from {@link + * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive, + * it will default to 10 (as is the case for + * {@code Integer.toString}). The digit-to-character mapping + * provided by {@code Character.forDigit} is used, and a minus + * sign is prepended if appropriate. (This representation is + * compatible with the {@link #BigInteger(String, int) (String, + * int)} constructor.) + * + * @param radix radix of the String representation. + * @return String representation of this BigInteger in the given radix. + * @see Integer#toString + * @see Character#forDigit + * @see #BigInteger(java.lang.String, int) + */ + public String toString(int radix) { + if (signum == 0) + return "0"; + if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) + radix = 10; + + BigInteger abs = this.abs(); + + // Ensure buffer capacity sufficient to contain string representation + // floor(bitLength*log(2)/log(radix)) + 1 + // plus an additional character for the sign if negative. + int b = abs.bitLength(); + int numChars = (int)(Math.floor(b*LOG_TWO/logCache[radix]) + 1) + + (signum < 0 ? 1 : 0); + StringBuilder sb = new StringBuilder(numChars); + + if (signum < 0) { + sb.append('-'); + } + + // Use recursive toString. + toString(abs, sb, radix, 0); + + return sb.toString(); + } + + /** + * If {@code numZeros > 0}, appends that many zeros to the + * specified StringBuilder; otherwise, does nothing. + * + * @param buf The StringBuilder that will be appended to. + * @param numZeros The number of zeros to append. + */ + private static void padWithZeros(StringBuilder buf, int numZeros) { + while (numZeros >= NUM_ZEROS) { + buf.append(ZEROS); + numZeros -= NUM_ZEROS; + } + if (numZeros > 0) { + buf.append(ZEROS, 0, numZeros); + } + } + + /** + * This method is used to perform toString when arguments are small. + * The value must be non-negative. If {@code digits <= 0} no padding + * (pre-pending with zeros) will be effected. + * + * @param radix The base to convert to. + * @param buf The StringBuilder that will be appended to in place. + * @param digits The minimum number of digits to pad to. + */ + private void smallToString(int radix, StringBuilder buf, int digits) { + assert signum >= 0; + + if (signum == 0) { + padWithZeros(buf, digits); + return; + } + + // Compute upper bound on number of digit groups and allocate space + int maxNumDigitGroups = (4*mag.length + 6)/7; + long[] digitGroups = new long[maxNumDigitGroups]; + + // Translate number to string, a digit group at a time + BigInteger tmp = this; + int numGroups = 0; + while (tmp.signum != 0) { + BigInteger d = longRadix[radix]; + + MutableBigInteger q = new MutableBigInteger(), + a = new MutableBigInteger(tmp.mag), + b = new MutableBigInteger(d.mag); + MutableBigInteger r = a.divide(b, q); + BigInteger q2 = q.toBigInteger(tmp.signum * d.signum); + BigInteger r2 = r.toBigInteger(tmp.signum * d.signum); + + digitGroups[numGroups++] = r2.longValue(); + tmp = q2; + } + + // Get string version of first digit group + String s = Long.toString(digitGroups[numGroups-1], radix); + + // Pad with internal zeros if necessary. + padWithZeros(buf, digits - (s.length() + + (numGroups - 1)*digitsPerLong[radix])); + + // Put first digit group into result buffer + buf.append(s); + + // Append remaining digit groups each padded with leading zeros + for (int i=numGroups-2; i >= 0; i--) { + // Prepend (any) leading zeros for this digit group + s = Long.toString(digitGroups[i], radix); + int numLeadingZeros = digitsPerLong[radix] - s.length(); + if (numLeadingZeros != 0) { + buf.append(ZEROS, 0, numLeadingZeros); + } + buf.append(s); + } + } + + /** + * Converts the specified BigInteger to a string and appends to + * {@code sb}. This implements the recursive Schoenhage algorithm + * for base conversions. This method can only be called for non-negative + * numbers. + *

+ * See Knuth, Donald, _The Art of Computer Programming_, Vol. 2, + * Answers to Exercises (4.4) Question 14. + * + * @param u The number to convert to a string. + * @param sb The StringBuilder that will be appended to in place. + * @param radix The base to convert to. + * @param digits The minimum number of digits to pad to. + */ + private static void toString(BigInteger u, StringBuilder sb, + int radix, int digits) { + assert u.signum() >= 0; + + // If we're smaller than a certain threshold, use the smallToString + // method, padding with leading zeroes when necessary unless we're + // at the beginning of the string or digits <= 0. As u.signum() >= 0, + // smallToString() will not prepend a negative sign. + if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) { + u.smallToString(radix, sb, digits); + return; + } + + // Calculate a value for n in the equation radix^(2^n) = u + // and subtract 1 from that value. This is used to find the + // cache index that contains the best value to divide u. + int b = u.bitLength(); + int n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / + LOG_TWO - 1.0); + + BigInteger v = getRadixConversionCache(radix, n); + BigInteger[] results; + results = u.divideAndRemainder(v); + + int expectedDigits = 1 << n; + + // Now recursively build the two halves of each number. + toString(results[0], sb, radix, digits - expectedDigits); + toString(results[1], sb, radix, expectedDigits); + } + + /** + * Returns the value radix^(2^exponent) from the cache. + * If this value doesn't already exist in the cache, it is added. + *

+ * This could be changed to a more complicated caching method using + * {@code Future}. + */ + private static BigInteger getRadixConversionCache(int radix, int exponent) { + BigInteger[] cacheLine = powerCache[radix]; // volatile read + if (exponent < cacheLine.length) { + return cacheLine[exponent]; + } + + int oldLength = cacheLine.length; + cacheLine = Arrays.copyOf(cacheLine, exponent + 1); + for (int i = oldLength; i <= exponent; i++) { + cacheLine[i] = cacheLine[i - 1].pow(2); + } + + BigInteger[][] pc = powerCache; // volatile read again + if (exponent >= pc[radix].length) { + pc = pc.clone(); + pc[radix] = cacheLine; + powerCache = pc; // volatile write, publish + } + return cacheLine[exponent]; + } + + /* Size of ZEROS string. */ + private static int NUM_ZEROS = 63; + + /* ZEROS is a string of NUM_ZEROS consecutive zeros. */ + private static final String ZEROS = "0".repeat(NUM_ZEROS); + + /** + * Returns the decimal String representation of this BigInteger. + * The digit-to-character mapping provided by + * {@code Character.forDigit} is used, and a minus sign is + * prepended if appropriate. (This representation is compatible + * with the {@link #BigInteger(String) (String)} constructor, and + * allows for String concatenation with Java's + operator.) + * + * @return decimal String representation of this BigInteger. + * @see Character#forDigit + * @see #BigInteger(java.lang.String) + */ + public String toString() { + return toString(10); + } + + /** + * Returns a byte array containing the two's-complement + * representation of this BigInteger. The byte array will be in + * big-endian byte-order: the most significant byte is in + * the zeroth element. The array will contain the minimum number + * of bytes required to represent this BigInteger, including at + * least one sign bit, which is {@code (ceil((this.bitLength() + + * 1)/8))}. (This representation is compatible with the + * {@link #BigInteger(byte[]) (byte[])} constructor.) + * + * @return a byte array containing the two's-complement representation of + * this BigInteger. + * @see #BigInteger(byte[]) + */ + public byte[] toByteArray() { + int byteLen = bitLength()/8 + 1; + byte[] byteArray = new byte[byteLen]; + + for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) { + if (bytesCopied == 4) { + nextInt = getInt(intIndex++); + bytesCopied = 1; + } else { + nextInt >>>= 8; + bytesCopied++; + } + byteArray[i] = (byte)nextInt; + } + return byteArray; + } + + /** + * Converts this BigInteger to an {@code int}. This + * conversion is analogous to a + * narrowing primitive conversion from {@code long} to + * {@code int} as defined in + * The Java Language Specification: + * if this BigInteger is too big to fit in an + * {@code int}, only the low-order 32 bits are returned. + * Note that this conversion can lose information about the + * overall magnitude of the BigInteger value as well as return a + * result with the opposite sign. + * + * @return this BigInteger converted to an {@code int}. + * @see #intValueExact() + * @jls 5.1.3 Narrowing Primitive Conversion + */ + public int intValue() { + int result = 0; + result = getInt(0); + return result; + } + + /** + * Converts this BigInteger to a {@code long}. This + * conversion is analogous to a + * narrowing primitive conversion from {@code long} to + * {@code int} as defined in + * The Java Language Specification: + * if this BigInteger is too big to fit in a + * {@code long}, only the low-order 64 bits are returned. + * Note that this conversion can lose information about the + * overall magnitude of the BigInteger value as well as return a + * result with the opposite sign. + * + * @return this BigInteger converted to a {@code long}. + * @see #longValueExact() + * @jls 5.1.3 Narrowing Primitive Conversion + */ + public long longValue() { + long result = 0; + + for (int i=1; i >= 0; i--) + result = (result << 32) + (getInt(i) & LONG_MASK); + return result; + } + + /** + * Converts this BigInteger to a {@code float}. This + * conversion is similar to the + * narrowing primitive conversion from {@code double} to + * {@code float} as defined in + * The Java Language Specification: + * if this BigInteger has too great a magnitude + * to represent as a {@code float}, it will be converted to + * {@link Float#NEGATIVE_INFINITY} or {@link + * Float#POSITIVE_INFINITY} as appropriate. Note that even when + * the return value is finite, this conversion can lose + * information about the precision of the BigInteger value. + * + * @return this BigInteger converted to a {@code float}. + * @jls 5.1.3 Narrowing Primitive Conversion + */ + public float floatValue() { + if (signum == 0) { + return 0.0f; + } + + int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1; + + // exponent == floor(log2(abs(this))) + if (exponent < Long.SIZE - 1) { + return longValue(); + } else if (exponent > Float.MAX_EXPONENT) { + return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY; + } + + /* + * We need the top SIGNIFICAND_WIDTH bits, including the "implicit" + * one bit. To make rounding easier, we pick out the top + * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or + * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1 + * bits, and signifFloor the top SIGNIFICAND_WIDTH. + * + * It helps to consider the real number signif = abs(this) * + * 2^(SIGNIFICAND_WIDTH - 1 - exponent). + */ + int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH; + + int twiceSignifFloor; + // twiceSignifFloor will be == abs().shiftRight(shift).intValue() + // We do the shift into an int directly to improve performance. + + int nBits = shift & 0x1f; + int nBits2 = 32 - nBits; + + if (nBits == 0) { + twiceSignifFloor = mag[0]; + } else { + twiceSignifFloor = mag[0] >>> nBits; + if (twiceSignifFloor == 0) { + twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits); + } + } + + int signifFloor = twiceSignifFloor >> 1; + signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit + + /* + * We round up if either the fractional part of signif is strictly + * greater than 0.5 (which is true if the 0.5 bit is set and any lower + * bit is set), or if the fractional part of signif is >= 0.5 and + * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit + * are set). This is equivalent to the desired HALF_EVEN rounding. + */ + boolean increment = (twiceSignifFloor & 1) != 0 + && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift); + int signifRounded = increment ? signifFloor + 1 : signifFloor; + int bits = ((exponent + FloatConsts.EXP_BIAS)) + << (FloatConsts.SIGNIFICAND_WIDTH - 1); + bits += signifRounded; + /* + * If signifRounded == 2^24, we'd need to set all of the significand + * bits to zero and add 1 to the exponent. This is exactly the behavior + * we get from just adding signifRounded to bits directly. If the + * exponent is Float.MAX_EXPONENT, we round up (correctly) to + * Float.POSITIVE_INFINITY. + */ + bits |= signum & FloatConsts.SIGN_BIT_MASK; + return Float.intBitsToFloat(bits); + } + + /** + * Converts this BigInteger to a {@code double}. This + * conversion is similar to the + * narrowing primitive conversion from {@code double} to + * {@code float} as defined in + * The Java Language Specification: + * if this BigInteger has too great a magnitude + * to represent as a {@code double}, it will be converted to + * {@link Double#NEGATIVE_INFINITY} or {@link + * Double#POSITIVE_INFINITY} as appropriate. Note that even when + * the return value is finite, this conversion can lose + * information about the precision of the BigInteger value. + * + * @return this BigInteger converted to a {@code double}. + * @jls 5.1.3 Narrowing Primitive Conversion + */ + public double doubleValue() { + if (signum == 0) { + return 0.0; + } + + int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1; + + // exponent == floor(log2(abs(this))Double) + if (exponent < Long.SIZE - 1) { + return longValue(); + } else if (exponent > Double.MAX_EXPONENT) { + return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; + } + + /* + * We need the top SIGNIFICAND_WIDTH bits, including the "implicit" + * one bit. To make rounding easier, we pick out the top + * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or + * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1 + * bits, and signifFloor the top SIGNIFICAND_WIDTH. + * + * It helps to consider the real number signif = abs(this) * + * 2^(SIGNIFICAND_WIDTH - 1 - exponent). + */ + int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH; + + long twiceSignifFloor; + // twiceSignifFloor will be == abs().shiftRight(shift).longValue() + // We do the shift into a long directly to improve performance. + + int nBits = shift & 0x1f; + int nBits2 = 32 - nBits; + + int highBits; + int lowBits; + if (nBits == 0) { + highBits = mag[0]; + lowBits = mag[1]; + } else { + highBits = mag[0] >>> nBits; + lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits); + if (highBits == 0) { + highBits = lowBits; + lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits); + } + } + + twiceSignifFloor = ((highBits & LONG_MASK) << 32) + | (lowBits & LONG_MASK); + + long signifFloor = twiceSignifFloor >> 1; + signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit + + /* + * We round up if either the fractional part of signif is strictly + * greater than 0.5 (which is true if the 0.5 bit is set and any lower + * bit is set), or if the fractional part of signif is >= 0.5 and + * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit + * are set). This is equivalent to the desired HALF_EVEN rounding. + */ + boolean increment = (twiceSignifFloor & 1) != 0 + && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift); + long signifRounded = increment ? signifFloor + 1 : signifFloor; + long bits = (long) ((exponent + DoubleConsts.EXP_BIAS)) + << (DoubleConsts.SIGNIFICAND_WIDTH - 1); + bits += signifRounded; + /* + * If signifRounded == 2^53, we'd need to set all of the significand + * bits to zero and add 1 to the exponent. This is exactly the behavior + * we get from just adding signifRounded to bits directly. If the + * exponent is Double.MAX_EXPONENT, we round up (correctly) to + * Double.POSITIVE_INFINITY. + */ + bits |= signum & DoubleConsts.SIGN_BIT_MASK; + return Double.longBitsToDouble(bits); + } + + /** + * Returns a copy of the input array stripped of any leading zero bytes. + */ + private static int[] stripLeadingZeroInts(int val[]) { + int vlen = val.length; + int keep; + + // Find first nonzero byte + for (keep = 0; keep < vlen && val[keep] == 0; keep++) + ; + return java.util.Arrays.copyOfRange(val, keep, vlen); + } + + /** + * Returns the input array stripped of any leading zero bytes. + * Since the source is trusted the copying may be skipped. + */ + private static int[] trustedStripLeadingZeroInts(int val[]) { + int vlen = val.length; + int keep; + + // Find first nonzero byte + for (keep = 0; keep < vlen && val[keep] == 0; keep++) + ; + return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen); + } + + /** + * Returns a copy of the input array stripped of any leading zero bytes. + */ + private static int[] stripLeadingZeroBytes(byte a[], int off, int len) { + int indexBound = off + len; + int keep; + + // Find first nonzero byte + for (keep = off; keep < indexBound && a[keep] == 0; keep++) + ; + + // Allocate new array and copy relevant part of input array + int intLength = ((indexBound - keep) + 3) >>> 2; + int[] result = new int[intLength]; + int b = indexBound - 1; + for (int i = intLength-1; i >= 0; i--) { + result[i] = a[b--] & 0xff; + int bytesRemaining = b - keep + 1; + int bytesToTransfer = Math.min(3, bytesRemaining); + for (int j=8; j <= (bytesToTransfer << 3); j += 8) + result[i] |= ((a[b--] & 0xff) << j); + } + return result; + } + + /** + * Takes an array a representing a negative 2's-complement number and + * returns the minimal (no leading zero bytes) unsigned whose value is -a. + */ + private static int[] makePositive(byte a[], int off, int len) { + int keep, k; + int indexBound = off + len; + + // Find first non-sign (0xff) byte of input + for (keep=off; keep < indexBound && a[keep] == -1; keep++) + ; + + + /* Allocate output array. If all non-sign bytes are 0x00, we must + * allocate space for one extra output byte. */ + for (k=keep; k < indexBound && a[k] == 0; k++) + ; + + int extraByte = (k == indexBound) ? 1 : 0; + int intLength = ((indexBound - keep + extraByte) + 3) >>> 2; + int result[] = new int[intLength]; + + /* Copy one's complement of input into output, leaving extra + * byte (if it exists) == 0x00 */ + int b = indexBound - 1; + for (int i = intLength-1; i >= 0; i--) { + result[i] = a[b--] & 0xff; + int numBytesToTransfer = Math.min(3, b-keep+1); + if (numBytesToTransfer < 0) + numBytesToTransfer = 0; + for (int j=8; j <= 8*numBytesToTransfer; j += 8) + result[i] |= ((a[b--] & 0xff) << j); + + // Mask indicates which bits must be complemented + int mask = -1 >>> (8*(3-numBytesToTransfer)); + result[i] = ~result[i] & mask; + } + + // Add one to one's complement to generate two's complement + for (int i=result.length-1; i >= 0; i--) { + result[i] = (int)((result[i] & LONG_MASK) + 1); + if (result[i] != 0) + break; + } + + return result; + } + + /** + * Takes an array a representing a negative 2's-complement number and + * returns the minimal (no leading zero ints) unsigned whose value is -a. + */ + private static int[] makePositive(int a[]) { + int keep, j; + + // Find first non-sign (0xffffffff) int of input + for (keep=0; keep < a.length && a[keep] == -1; keep++) + ; + + /* Allocate output array. If all non-sign ints are 0x00, we must + * allocate space for one extra output int. */ + for (j=keep; j < a.length && a[j] == 0; j++) + ; + int extraInt = (j == a.length ? 1 : 0); + int result[] = new int[a.length - keep + extraInt]; + + /* Copy one's complement of input into output, leaving extra + * int (if it exists) == 0x00 */ + for (int i = keep; i < a.length; i++) + result[i - keep + extraInt] = ~a[i]; + + // Add one to one's complement to generate two's complement + for (int i=result.length-1; ++result[i] == 0; i--) + ; + + return result; + } + + /* + * The following two arrays are used for fast String conversions. Both + * are indexed by radix. The first is the number of digits of the given + * radix that can fit in a Java long without "going negative", i.e., the + * highest integer n such that radix**n < 2**63. The second is the + * "long radix" that tears each number into "long digits", each of which + * consists of the number of digits in the corresponding element in + * digitsPerLong (longRadix[i] = i**digitPerLong[i]). Both arrays have + * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not + * used. + */ + private static int digitsPerLong[] = {0, 0, + 62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, + 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12}; + + private static BigInteger longRadix[] = {null, null, + valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL), + valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL), + valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L), + valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L), + valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L), + valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL), + valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L), + valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L), + valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L), + valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L), + valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L), + valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L), + valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL), + valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L), + valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L), + valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L), + valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L), + valueOf(0x41c21cb8e1000000L)}; + + /* + * These two arrays are the integer analogue of above. + */ + private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11, + 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5}; + + private static int intRadix[] = {0, 0, + 0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800, + 0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61, + 0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f, 0x10000000, + 0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d, + 0x6c20a40, 0x8d2d931, 0xb640000, 0xe8d4a51, 0x1269ae40, + 0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41, + 0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400 + }; + + /** + * These routines provide access to the two's complement representation + * of BigIntegers. + */ + + /** + * Returns the length of the two's complement representation in ints, + * including space for at least one sign bit. + */ + private int intLength() { + return (bitLength() >>> 5) + 1; + } + + /* Returns sign bit */ + private int signBit() { + return signum < 0 ? 1 : 0; + } + + /* Returns an int of sign bits */ + private int signInt() { + return signum < 0 ? -1 : 0; + } + + /** + * Returns the specified int of the little-endian two's complement + * representation (int 0 is the least significant). The int number can + * be arbitrarily high (values are logically preceded by infinitely many + * sign ints). + */ + private int getInt(int n) { + if (n < 0) + return 0; + if (n >= mag.length) + return signInt(); + + int magInt = mag[mag.length-n-1]; + + return (signum >= 0 ? magInt : + (n <= firstNonzeroIntNum() ? -magInt : ~magInt)); + } + + /** + * Returns the index of the int that contains the first nonzero int in the + * little-endian binary representation of the magnitude (int 0 is the + * least significant). If the magnitude is zero, return value is undefined. + * + *

Note: never used for a BigInteger with a magnitude of zero. + * @see #getInt + */ + private int firstNonzeroIntNum() { + int fn = firstNonzeroIntNumPlusTwo - 2; + if (fn == -2) { // firstNonzeroIntNum not initialized yet + // Search for the first nonzero int + int i; + int mlen = mag.length; + for (i = mlen - 1; i >= 0 && mag[i] == 0; i--) + ; + fn = mlen - i - 1; + firstNonzeroIntNumPlusTwo = fn + 2; // offset by two to initialize + } + return fn; + } + + + /* + @java.io.Serial + private static final long serialVersionUID = -8287574255936472291L; + + @java.io.Serial + private static final ObjectStreamField[] serialPersistentFields = { + new ObjectStreamField("signum", Integer.TYPE), + new ObjectStreamField("magnitude", byte[].class), + new ObjectStreamField("bitCount", Integer.TYPE), + new ObjectStreamField("bitLength", Integer.TYPE), + new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE), + new ObjectStreamField("lowestSetBit", Integer.TYPE) + }; + + + @java.io.Serial + private void readObject(java.io.ObjectInputStream s) + throws java.io.IOException, ClassNotFoundException { + // prepare to read the alternate persistent fields + ObjectInputStream.GetField fields = s.readFields(); + + // Read and validate the alternate persistent fields that we + // care about, signum and magnitude + + // Read and validate signum + int sign = fields.get("signum", -2); + if (sign < -1 || sign > 1) { + String message = "BigInteger: Invalid signum value"; + if (fields.defaulted("signum")) + message = "BigInteger: Signum not present in stream"; + throw new java.io.StreamCorruptedException(message); + } + + // Read and validate magnitude + byte[] magnitude = (byte[])fields.get("magnitude", null); + magnitude = magnitude.clone(); // defensive copy + int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length); + if ((mag.length == 0) != (sign == 0)) { + String message = "BigInteger: signum-magnitude mismatch"; + if (fields.defaulted("magnitude")) + message = "BigInteger: Magnitude not present in stream"; + throw new java.io.StreamCorruptedException(message); + } + + // Equivalent to checkRange() on mag local without assigning + // this.mag field + if (mag.length > MAX_MAG_LENGTH || + (mag.length == MAX_MAG_LENGTH && mag[0] < 0)) { + throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range"); + } + + // Commit final fields via Unsafe + UnsafeHolder.putSignAndMag(this, sign, mag); + } + + + @java.io.Serial + private void readObjectNoData() + throws ObjectStreamException { + throw new InvalidObjectException("Deserialized BigInteger objects need data"); + } + + // Support for resetting final fields while deserializing + private static class UnsafeHolder { + private static final jdk.internal.misc.Unsafe unsafe + = jdk.internal.misc.Unsafe.getUnsafe(); + private static final long signumOffset + = unsafe.objectFieldOffset(BigInteger.class, "signum"); + private static final long magOffset + = unsafe.objectFieldOffset(BigInteger.class, "mag"); + + static void putSignAndMag(BigInteger bi, int sign, int[] magnitude) { + unsafe.putInt(bi, signumOffset, sign); + unsafe.putReference(bi, magOffset, magnitude); + } + } + + @java.io.Serial + private void writeObject(ObjectOutputStream s) throws IOException { + // set the values of the Serializable fields + ObjectOutputStream.PutField fields = s.putFields(); + fields.put("signum", signum); + fields.put("magnitude", magSerializedForm()); + // The values written for cached fields are compatible with older + // versions, but are ignored in readObject so don't otherwise matter. + fields.put("bitCount", -1); + fields.put("bitLength", -1); + fields.put("lowestSetBit", -2); + fields.put("firstNonzeroByteNum", -2); + + // save them + s.writeFields(); + } + + private byte[] magSerializedForm() { + int len = mag.length; + + int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0])); + int byteLen = (bitLen + 7) >>> 3; + byte[] result = new byte[byteLen]; + + for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0; + i >= 0; i--) { + if (bytesCopied == 4) { + nextInt = mag[intIndex--]; + bytesCopied = 1; + } else { + nextInt >>>= 8; + bytesCopied++; + } + result[i] = (byte)nextInt; + } + return result; + } + + */ + + /** + * Converts this {@code BigInteger} to a {@code long}, checking + * for lost information. If the value of this {@code BigInteger} + * is out of the range of the {@code long} type, then an + * {@code ArithmeticException} is thrown. + * + * @return this {@code BigInteger} converted to a {@code long}. + * @throws ArithmeticException if the value of {@code this} will + * not exactly fit in a {@code long}. + * @see BigInteger#longValue + * @since 1.8 + */ + public long longValueExact() { + if (mag.length <= 2 && bitLength() <= 63) + return longValue(); + else + throw new ArithmeticException("BigInteger out of long range"); + } + + /** + * Converts this {@code BigInteger} to an {@code int}, checking + * for lost information. If the value of this {@code BigInteger} + * is out of the range of the {@code int} type, then an + * {@code ArithmeticException} is thrown. + * + * @return this {@code BigInteger} converted to an {@code int}. + * @throws ArithmeticException if the value of {@code this} will + * not exactly fit in an {@code int}. + * @see BigInteger#intValue + * @since 1.8 + */ + public int intValueExact() { + if (mag.length <= 1 && bitLength() <= 31) + return intValue(); + else + throw new ArithmeticException("BigInteger out of int range"); + } + + /** + * Converts this {@code BigInteger} to a {@code short}, checking + * for lost information. If the value of this {@code BigInteger} + * is out of the range of the {@code short} type, then an + * {@code ArithmeticException} is thrown. + * + * @return this {@code BigInteger} converted to a {@code short}. + * @throws ArithmeticException if the value of {@code this} will + * not exactly fit in a {@code short}. + * @see BigInteger#shortValue + * @since 1.8 + */ + public short shortValueExact() { + if (mag.length <= 1 && bitLength() <= 31) { + int value = intValue(); + if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE) + return shortValue(); + } + throw new ArithmeticException("BigInteger out of short range"); + } + + /** + * Converts this {@code BigInteger} to a {@code byte}, checking + * for lost information. If the value of this {@code BigInteger} + * is out of the range of the {@code byte} type, then an + * {@code ArithmeticException} is thrown. + * + * @return this {@code BigInteger} converted to a {@code byte}. + * @throws ArithmeticException if the value of {@code this} will + * not exactly fit in a {@code byte}. + * @see BigInteger#byteValue + * @since 1.8 + */ + public byte byteValueExact() { + if (mag.length <= 1 && bitLength() <= 31) { + int value = intValue(); + if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE) + return byteValue(); + } + throw new ArithmeticException("BigInteger out of byte range"); + } +} diff --git a/egklib/src/jvmMain/java/org/cryptobiotic/bigint/DoubleConsts.java b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/DoubleConsts.java new file mode 100644 index 00000000..36a3c64b --- /dev/null +++ b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/DoubleConsts.java @@ -0,0 +1,52 @@ +package org.cryptobiotic.bigint; + +public class DoubleConsts { + /** + * Don't let anyone instantiate this class. + */ + private DoubleConsts() {} + + /** + * The number of logical bits in the significand of a + * {@code double} number, including the implicit bit. + */ + public static final int SIGNIFICAND_WIDTH = 53; + + /** + * The exponent the smallest positive {@code double} + * subnormal value would have if it could be normalized.. + */ + public static final int MIN_SUB_EXPONENT = Double.MIN_EXPONENT - + (SIGNIFICAND_WIDTH - 1); + + /** + * Bias used in representing a {@code double} exponent. + */ + public static final int EXP_BIAS = 1023; + + /** + * Bit mask to isolate the sign bit of a {@code double}. + */ + public static final long SIGN_BIT_MASK = 0x8000000000000000L; + + /** + * Bit mask to isolate the exponent field of a + * {@code double}. + */ + public static final long EXP_BIT_MASK = 0x7FF0000000000000L; + + /** + * Bit mask to isolate the significand field of a + * {@code double}. + */ + public static final long SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; + + static { + // verify bit masks cover all bit positions and that the bit + // masks are non-overlapping + assert(((SIGN_BIT_MASK | EXP_BIT_MASK | SIGNIF_BIT_MASK) == ~0L) && + (((SIGN_BIT_MASK & EXP_BIT_MASK) == 0L) && + ((SIGN_BIT_MASK & SIGNIF_BIT_MASK) == 0L) && + ((EXP_BIT_MASK & SIGNIF_BIT_MASK) == 0L))); + } +} diff --git a/egklib/src/jvmMain/java/org/cryptobiotic/bigint/FloatConsts.java b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/FloatConsts.java new file mode 100644 index 00000000..c5a5999e --- /dev/null +++ b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/FloatConsts.java @@ -0,0 +1,52 @@ +package org.cryptobiotic.bigint; + +public class FloatConsts { + /** + * Don't let anyone instantiate this class. + */ + private FloatConsts() {} + + /** + * The number of logical bits in the significand of a + * {@code float} number, including the implicit bit. + */ + public static final int SIGNIFICAND_WIDTH = 24; + + /** + * The exponent the smallest positive {@code float} subnormal + * value would have if it could be normalized. + */ + public static final int MIN_SUB_EXPONENT = Float.MIN_EXPONENT - + (SIGNIFICAND_WIDTH - 1); + + /** + * Bias used in representing a {@code float} exponent. + */ + public static final int EXP_BIAS = 127; + + /** + * Bit mask to isolate the sign bit of a {@code float}. + */ + public static final int SIGN_BIT_MASK = 0x80000000; + + /** + * Bit mask to isolate the exponent field of a + * {@code float}. + */ + public static final int EXP_BIT_MASK = 0x7F800000; + + /** + * Bit mask to isolate the significand field of a + * {@code float}. + */ + public static final int SIGNIF_BIT_MASK = 0x007FFFFF; + + static { + // verify bit masks cover all bit positions and that the bit + // masks are non-overlapping + assert(((SIGN_BIT_MASK | EXP_BIT_MASK | SIGNIF_BIT_MASK) == ~0) && + (((SIGN_BIT_MASK & EXP_BIT_MASK) == 0) && + ((SIGN_BIT_MASK & SIGNIF_BIT_MASK) == 0) && + ((EXP_BIT_MASK & SIGNIF_BIT_MASK) == 0))); + } +} \ No newline at end of file diff --git a/egklib/src/jvmMain/java/org/cryptobiotic/bigint/MutableBigInteger.java b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/MutableBigInteger.java new file mode 100644 index 00000000..3240f3da --- /dev/null +++ b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/MutableBigInteger.java @@ -0,0 +1,2360 @@ +/* + * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package org.cryptobiotic.bigint; + +/** + * A class used to represent multiprecision integers that makes efficient + * use of allocated space by allowing a number to occupy only part of + * an array so that the arrays do not have to be reallocated as often. + * When performing an operation with many iterations the array used to + * hold a number is only reallocated when necessary and does not have to + * be the same size as the number it represents. A mutable number allows + * calculations to occur on the same number without having to create + * a new number for every step of the calculation as occurs with + * BigIntegers. + * + * @see BigInteger + * @author Michael McCloskey + * @author Timothy Buktu + * @since 1.3 + */ + +import java.util.Arrays; + +import static org.cryptobiotic.bigint.BigInteger.LONG_MASK; + + +class MutableBigInteger { + static final long INFLATED = Long.MIN_VALUE; + + /** + * Holds the magnitude of this MutableBigInteger in big endian order. + * The magnitude may start at an offset into the value array, and it may + * end before the length of the value array. + */ + int[] value; + + /** + * The number of ints of the value array that are currently used + * to hold the magnitude of this MutableBigInteger. The magnitude starts + * at an offset and offset + intLen may be less than value.length. + */ + int intLen; + + /** + * The offset into the value array where the magnitude of this + * MutableBigInteger begins. + */ + int offset = 0; + + // Constants + /** + * MutableBigInteger with one element value array with the value 1. Used by + * BigDecimal divideAndRound to increment the quotient. Use this constant + * only when the method is not going to modify this object. + */ + static final MutableBigInteger ONE = new MutableBigInteger(1); + + /** + * The minimum {@code intLen} for cancelling powers of two before + * dividing. + * If the number of ints is less than this threshold, + * {@code divideKnuth} does not eliminate common powers of two from + * the dividend and divisor. + */ + static final int KNUTH_POW2_THRESH_LEN = 6; + + /** + * The minimum number of trailing zero ints for cancelling powers of two + * before dividing. + * If the dividend and divisor don't share at least this many zero ints + * at the end, {@code divideKnuth} does not eliminate common powers + * of two from the dividend and divisor. + */ + static final int KNUTH_POW2_THRESH_ZEROS = 3; + + // Constructors + + /** + * The default constructor. An empty MutableBigInteger is created with + * a one word capacity. + */ + MutableBigInteger() { + value = new int[1]; + intLen = 0; + } + + /** + * Construct a new MutableBigInteger with a magnitude specified by + * the int val. + */ + MutableBigInteger(int val) { + value = new int[1]; + intLen = 1; + value[0] = val; + } + + /** + * Construct a new MutableBigInteger with the specified value array + * up to the length of the array supplied. + */ + MutableBigInteger(int[] val) { + value = val; + intLen = val.length; + } + + /** + * Construct a new MutableBigInteger with a magnitude equal to the + * specified BigInteger. + */ + MutableBigInteger(BigInteger b) { + intLen = b.mag.length; + value = Arrays.copyOf(b.mag, intLen); + } + + /** + * Construct a new MutableBigInteger with a magnitude equal to the + * specified MutableBigInteger. + */ + MutableBigInteger(MutableBigInteger val) { + intLen = val.intLen; + value = Arrays.copyOfRange(val.value, val.offset, val.offset + intLen); + } + + /** + * Makes this number an {@code n}-int number all of whose bits are ones. + * Used by Burnikel-Ziegler division. + * @param n number of ints in the {@code value} array + */ + private void ones(int n) { + if (n > value.length) + value = new int[n]; + Arrays.fill(value, -1); + offset = 0; + intLen = n; + } + + /** + * Internal helper method to return the magnitude array. The caller is not + * supposed to modify the returned array. + */ + private int[] getMagnitudeArray() { + if (offset > 0 || value.length != intLen) { + // Shrink value to be the total magnitude + int[] tmp = Arrays.copyOfRange(value, offset, offset + intLen); + Arrays.fill(value, 0); + offset = 0; + intLen = tmp.length; + value = tmp; + } + return value; + } + + /** + * Convert this MutableBigInteger to a long value. The caller has to make + * sure this MutableBigInteger can be fit into long. + */ + private long toLong() { + assert (intLen <= 2) : "this MutableBigInteger exceeds the range of long"; + if (intLen == 0) + return 0; + long d = value[offset] & LONG_MASK; + return (intLen == 2) ? d << 32 | (value[offset + 1] & LONG_MASK) : d; + } + + /** + * Convert this MutableBigInteger to a BigInteger object. + */ + BigInteger toBigInteger(int sign) { + if (intLen == 0 || sign == 0) + return BigInteger.ZERO; + return new BigInteger(getMagnitudeArray(), sign); + } + + /** + * Converts this number to a nonnegative {@code BigInteger}. + */ + BigInteger toBigInteger() { + normalize(); + return toBigInteger(isZero() ? 0 : 1); + } + + /* + BigDecimal toBigDecimal(int sign, int scale) { + if (intLen == 0 || sign == 0) + return BigDecimal.zeroValueOf(scale); + int[] mag = getMagnitudeArray(); + int len = mag.length; + int d = mag[0]; + // If this MutableBigInteger can't be fit into long, we need to + // make a BigInteger object for the resultant BigDecimal object. + if (len > 2 || (d < 0 && len == 2)) + return new BigDecimal(new BigInteger(mag, sign), INFLATED, scale, 0); + long v = (len == 2) ? + ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) : + d & LONG_MASK; + return BigDecimal.valueOf(sign == -1 ? -v : v, scale); + } + + */ + + /** + * This is for internal use in converting from a MutableBigInteger + * object into a long value given a specified sign. + * returns INFLATED if value is not fit into long + */ + long toCompactValue(int sign) { + if (intLen == 0 || sign == 0) + return 0L; + int[] mag = getMagnitudeArray(); + int len = mag.length; + int d = mag[0]; + // If this MutableBigInteger can not be fitted into long, we need to + // make a BigInteger object for the resultant BigDecimal object. + if (len > 2 || (d < 0 && len == 2)) + return INFLATED; + long v = (len == 2) ? + ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) : + d & LONG_MASK; + return sign == -1 ? -v : v; + } + + /** + * Clear out a MutableBigInteger for reuse. + */ + void clear() { + offset = intLen = 0; + for (int index=0, n=value.length; index < n; index++) + value[index] = 0; + } + + /** + * Set a MutableBigInteger to zero, removing its offset. + */ + void reset() { + offset = intLen = 0; + } + + /** + * Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1 + * as this MutableBigInteger is numerically less than, equal to, or + * greater than {@code b}. + */ + final int compare(MutableBigInteger b) { + int blen = b.intLen; + if (intLen < blen) + return -1; + if (intLen > blen) + return 1; + + // Add Integer.MIN_VALUE to make the comparison act as unsigned integer + // comparison. + int[] bval = b.value; + for (int i = offset, j = b.offset; i < intLen + offset; i++, j++) { + int b1 = value[i] + 0x80000000; + int b2 = bval[j] + 0x80000000; + if (b1 < b2) + return -1; + if (b1 > b2) + return 1; + } + return 0; + } + + /** + * Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);} + * would return, but doesn't change the value of {@code b}. + */ + private int compareShifted(MutableBigInteger b, int ints) { + int blen = b.intLen; + int alen = intLen - ints; + if (alen < blen) + return -1; + if (alen > blen) + return 1; + + // Add Integer.MIN_VALUE to make the comparison act as unsigned integer + // comparison. + int[] bval = b.value; + for (int i = offset, j = b.offset; i < alen + offset; i++, j++) { + int b1 = value[i] + 0x80000000; + int b2 = bval[j] + 0x80000000; + if (b1 < b2) + return -1; + if (b1 > b2) + return 1; + } + return 0; + } + + /** + * Compare this against half of a MutableBigInteger object (Needed for + * remainder tests). + * Assumes no leading unnecessary zeros, which holds for results + * from divide(). + */ + final int compareHalf(MutableBigInteger b) { + int blen = b.intLen; + int len = intLen; + if (len <= 0) + return blen <= 0 ? 0 : -1; + if (len > blen) + return 1; + if (len < blen - 1) + return -1; + int[] bval = b.value; + int bstart = 0; + int carry = 0; + // Only 2 cases left:len == blen or len == blen - 1 + if (len != blen) { // len == blen - 1 + if (bval[bstart] == 1) { + ++bstart; + carry = 0x80000000; + } else + return -1; + } + // compare values with right-shifted values of b, + // carrying shifted-out bits across words + int[] val = value; + for (int i = offset, j = bstart; i < len + offset;) { + int bv = bval[j++]; + long hb = ((bv >>> 1) + carry) & LONG_MASK; + long v = val[i++] & LONG_MASK; + if (v != hb) + return v < hb ? -1 : 1; + carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0 + } + return carry == 0 ? 0 : -1; + } + + /** + * Return the index of the lowest set bit in this MutableBigInteger. If the + * magnitude of this MutableBigInteger is zero, -1 is returned. + */ + private final int getLowestSetBit() { + if (intLen == 0) + return -1; + int j, b; + for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--) + ; + b = value[j+offset]; + if (b == 0) + return -1; + return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b); + } + + /** + * Return the int in use in this MutableBigInteger at the specified + * index. This method is not used because it is not inlined on all + * platforms. + */ + private final int getInt(int index) { + return value[offset+index]; + } + + /** + * Return a long which is equal to the unsigned value of the int in + * use in this MutableBigInteger at the specified index. This method is + * not used because it is not inlined on all platforms. + */ + private final long getLong(int index) { + return value[offset+index] & LONG_MASK; + } + + /** + * Ensure that the MutableBigInteger is in normal form, specifically + * making sure that there are no leading zeros, and that if the + * magnitude is zero, then intLen is zero. + */ + final void normalize() { + if (intLen == 0) { + offset = 0; + return; + } + + int index = offset; + if (value[index] != 0) + return; + + int indexBound = index+intLen; + do { + index++; + } while(index < indexBound && value[index] == 0); + + int numZeros = index - offset; + intLen -= numZeros; + offset = (intLen == 0 ? 0 : offset+numZeros); + } + + /** + * If this MutableBigInteger cannot hold len words, increase the size + * of the value array to len words. + */ + private final void ensureCapacity(int len) { + if (value.length < len) { + value = new int[len]; + offset = 0; + intLen = len; + } + } + + /** + * Convert this MutableBigInteger into an int array with no leading + * zeros, of a length that is equal to this MutableBigInteger's intLen. + */ + int[] toIntArray() { + int[] result = new int[intLen]; + for(int i=0; i < intLen; i++) + result[i] = value[offset+i]; + return result; + } + + /** + * Sets the int at index+offset in this MutableBigInteger to val. + * This does not get inlined on all platforms so it is not used + * as often as originally intended. + */ + void setInt(int index, int val) { + value[offset + index] = val; + } + + /** + * Sets this MutableBigInteger's value array to the specified array. + * The intLen is set to the specified length. + */ + void setValue(int[] val, int length) { + value = val; + intLen = length; + offset = 0; + } + + /** + * Sets this MutableBigInteger's value array to a copy of the specified + * array. The intLen is set to the length of the new array. + */ + void copyValue(MutableBigInteger src) { + int len = src.intLen; + if (value.length < len) + value = new int[len]; + System.arraycopy(src.value, src.offset, value, 0, len); + intLen = len; + offset = 0; + } + + /** + * Sets this MutableBigInteger's value array to a copy of the specified + * array. The intLen is set to the length of the specified array. + */ + void copyValue(int[] val) { + int len = val.length; + if (value.length < len) + value = new int[len]; + System.arraycopy(val, 0, value, 0, len); + intLen = len; + offset = 0; + } + + /** + * Returns true iff this MutableBigInteger has a value of one. + */ + boolean isOne() { + return (intLen == 1) && (value[offset] == 1); + } + + /** + * Returns true iff this MutableBigInteger has a value of zero. + */ + boolean isZero() { + return (intLen == 0); + } + + /** + * Returns true iff this MutableBigInteger is even. + */ + boolean isEven() { + return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0); + } + + /** + * Returns true iff this MutableBigInteger is odd. + */ + boolean isOdd() { + return isZero() ? false : ((value[offset + intLen - 1] & 1) == 1); + } + + /** + * Returns true iff this MutableBigInteger is in normal form. A + * MutableBigInteger is in normal form if it has no leading zeros + * after the offset, and intLen + offset <= value.length. + */ + boolean isNormal() { + if (intLen + offset > value.length) + return false; + if (intLen == 0) + return true; + return (value[offset] != 0); + } + + /** + * Returns a String representation of this MutableBigInteger in radix 10. + */ + public String toString() { + BigInteger b = toBigInteger(1); + return b.toString(); + } + + /** + * Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number. + */ + void safeRightShift(int n) { + if (n/32 >= intLen) { + reset(); + } else { + rightShift(n); + } + } + + /** + * Right shift this MutableBigInteger n bits. The MutableBigInteger is left + * in normal form. + */ + void rightShift(int n) { + if (intLen == 0) + return; + int nInts = n >>> 5; + int nBits = n & 0x1F; + this.intLen -= nInts; + if (nBits == 0) + return; + int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]); + if (nBits >= bitsInHighWord) { + this.primitiveLeftShift(32 - nBits); + this.intLen--; + } else { + primitiveRightShift(nBits); + } + } + + /** + * Like {@link #leftShift(int)} but {@code n} can be zero. + */ + void safeLeftShift(int n) { + if (n > 0) { + leftShift(n); + } + } + + /** + * Left shift this MutableBigInteger n bits. + */ + void leftShift(int n) { + /* + * If there is enough storage space in this MutableBigInteger already + * the available space will be used. Space to the right of the used + * ints in the value array is faster to utilize, so the extra space + * will be taken from the right if possible. + */ + if (intLen == 0) + return; + int nInts = n >>> 5; + int nBits = n&0x1F; + int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]); + + // If shift can be done without moving words, do so + if (n <= (32-bitsInHighWord)) { + primitiveLeftShift(nBits); + return; + } + + int newLen = intLen + nInts +1; + if (nBits <= (32-bitsInHighWord)) + newLen--; + if (value.length < newLen) { + // The array must grow + int[] result = new int[newLen]; + for (int i=0; i < intLen; i++) + result[i] = value[offset+i]; + setValue(result, newLen); + } else if (value.length - offset >= newLen) { + // Use space on right + for(int i=0; i < newLen - intLen; i++) + value[offset+intLen+i] = 0; + } else { + // Must use space on left + for (int i=0; i < intLen; i++) + value[i] = value[offset+i]; + for (int i=intLen; i < newLen; i++) + value[i] = 0; + offset = 0; + } + intLen = newLen; + if (nBits == 0) + return; + if (nBits <= (32-bitsInHighWord)) + primitiveLeftShift(nBits); + else + primitiveRightShift(32 -nBits); + } + + /** + * A primitive used for division. This method adds in one multiple of the + * divisor a back to the dividend result at a specified offset. It is used + * when qhat was estimated too large, and must be adjusted. + */ + private int divadd(int[] a, int[] result, int offset) { + long carry = 0; + + for (int j=a.length-1; j >= 0; j--) { + long sum = (a[j] & LONG_MASK) + + (result[j+offset] & LONG_MASK) + carry; + result[j+offset] = (int)sum; + carry = sum >>> 32; + } + return (int)carry; + } + + /** + * This method is used for division. It multiplies an n word input a by one + * word input x, and subtracts the n word product from q. This is needed + * when subtracting qhat*divisor from dividend. + */ + private int mulsub(int[] q, int[] a, int x, int len, int offset) { + long xLong = x & LONG_MASK; + long carry = 0; + offset += len; + + for (int j=len-1; j >= 0; j--) { + long product = (a[j] & LONG_MASK) * xLong + carry; + long difference = q[offset] - product; + q[offset--] = (int)difference; + carry = (product >>> 32) + + (((difference & LONG_MASK) > + (((~(int)product) & LONG_MASK))) ? 1:0); + } + return (int)carry; + } + + /** + * The method is the same as mulsun, except the fact that q array is not + * updated, the only result of the method is borrow flag. + */ + private int mulsubBorrow(int[] q, int[] a, int x, int len, int offset) { + long xLong = x & LONG_MASK; + long carry = 0; + offset += len; + for (int j=len-1; j >= 0; j--) { + long product = (a[j] & LONG_MASK) * xLong + carry; + long difference = q[offset--] - product; + carry = (product >>> 32) + + (((difference & LONG_MASK) > + (((~(int)product) & LONG_MASK))) ? 1:0); + } + return (int)carry; + } + + /** + * Right shift this MutableBigInteger n bits, where n is + * less than 32. + * Assumes that intLen > 0, n > 0 for speed + */ + private final void primitiveRightShift(int n) { + int[] val = value; + int n2 = 32 - n; + for (int i=offset+intLen-1, c=val[i]; i > offset; i--) { + int b = c; + c = val[i-1]; + val[i] = (c << n2) | (b >>> n); + } + val[offset] >>>= n; + } + + /** + * Left shift this MutableBigInteger n bits, where n is + * less than 32. + * Assumes that intLen > 0, n > 0 for speed + */ + private final void primitiveLeftShift(int n) { + int[] val = value; + int n2 = 32 - n; + for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) { + int b = c; + c = val[i+1]; + val[i] = (b << n) | (c >>> n2); + } + val[offset+intLen-1] <<= n; + } + + /** + * Returns a {@code BigInteger} equal to the {@code n} + * low ints of this number. + */ + private BigInteger getLower(int n) { + if (isZero()) { + return BigInteger.ZERO; + } else if (intLen < n) { + return toBigInteger(1); + } else { + // strip zeros + int len = n; + while (len > 0 && value[offset+intLen-len] == 0) + len--; + int sign = len > 0 ? 1 : 0; + return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign); + } + } + + /** + * Discards all ints whose index is greater than {@code n}. + */ + private void keepLower(int n) { + if (intLen >= n) { + offset += intLen - n; + intLen = n; + } + } + + /** + * Adds the contents of two MutableBigInteger objects.The result + * is placed within this MutableBigInteger. + * The contents of the addend are not changed. + */ + void add(MutableBigInteger addend) { + int x = intLen; + int y = addend.intLen; + int resultLen = (intLen > addend.intLen ? intLen : addend.intLen); + int[] result = (value.length < resultLen ? new int[resultLen] : value); + + int rstart = result.length-1; + long sum; + long carry = 0; + + // Add common parts of both numbers + while(x > 0 && y > 0) { + x--; y--; + sum = (value[x+offset] & LONG_MASK) + + (addend.value[y+addend.offset] & LONG_MASK) + carry; + result[rstart--] = (int)sum; + carry = sum >>> 32; + } + + // Add remainder of the longer number + while(x > 0) { + x--; + if (carry == 0 && result == value && rstart == (x + offset)) + return; + sum = (value[x+offset] & LONG_MASK) + carry; + result[rstart--] = (int)sum; + carry = sum >>> 32; + } + while(y > 0) { + y--; + sum = (addend.value[y+addend.offset] & LONG_MASK) + carry; + result[rstart--] = (int)sum; + carry = sum >>> 32; + } + + if (carry > 0) { // Result must grow in length + resultLen++; + if (result.length < resultLen) { + int temp[] = new int[resultLen]; + // Result one word longer from carry-out; copy low-order + // bits into new result. + System.arraycopy(result, 0, temp, 1, result.length); + temp[0] = 1; + result = temp; + } else { + result[rstart--] = 1; + } + } + + value = result; + intLen = resultLen; + offset = result.length - resultLen; + } + + /** + * Adds the value of {@code addend} shifted {@code n} ints to the left. + * Has the same effect as {@code addend.leftShift(32*ints); add(addend);} + * but doesn't change the value of {@code addend}. + */ + void addShifted(MutableBigInteger addend, int n) { + if (addend.isZero()) { + return; + } + + int x = intLen; + int y = addend.intLen + n; + int resultLen = (intLen > y ? intLen : y); + int[] result = (value.length < resultLen ? new int[resultLen] : value); + + int rstart = result.length-1; + long sum; + long carry = 0; + + // Add common parts of both numbers + while (x > 0 && y > 0) { + x--; y--; + int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0; + sum = (value[x+offset] & LONG_MASK) + + (bval & LONG_MASK) + carry; + result[rstart--] = (int)sum; + carry = sum >>> 32; + } + + // Add remainder of the longer number + while (x > 0) { + x--; + if (carry == 0 && result == value && rstart == (x + offset)) { + return; + } + sum = (value[x+offset] & LONG_MASK) + carry; + result[rstart--] = (int)sum; + carry = sum >>> 32; + } + while (y > 0) { + y--; + int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0; + sum = (bval & LONG_MASK) + carry; + result[rstart--] = (int)sum; + carry = sum >>> 32; + } + + if (carry > 0) { // Result must grow in length + resultLen++; + if (result.length < resultLen) { + int temp[] = new int[resultLen]; + // Result one word longer from carry-out; copy low-order + // bits into new result. + System.arraycopy(result, 0, temp, 1, result.length); + temp[0] = 1; + result = temp; + } else { + result[rstart--] = 1; + } + } + + value = result; + intLen = resultLen; + offset = result.length - resultLen; + } + + /** + * Like {@link #addShifted(MutableBigInteger, int)} but {@code this.intLen} must + * not be greater than {@code n}. In other words, concatenates {@code this} + * and {@code addend}. + */ + void addDisjoint(MutableBigInteger addend, int n) { + if (addend.isZero()) + return; + + int x = intLen; + int y = addend.intLen + n; + int resultLen = (intLen > y ? intLen : y); + int[] result; + if (value.length < resultLen) + result = new int[resultLen]; + else { + result = value; + Arrays.fill(value, offset+intLen, value.length, 0); + } + + int rstart = result.length-1; + + // copy from this if needed + System.arraycopy(value, offset, result, rstart+1-x, x); + y -= x; + rstart -= x; + + int len = Math.min(y, addend.value.length-addend.offset); + System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len); + + // zero the gap + for (int i=rstart+1-y+len; i < rstart+1; i++) + result[i] = 0; + + value = result; + intLen = resultLen; + offset = result.length - resultLen; + } + + /** + * Adds the low {@code n} ints of {@code addend}. + */ + void addLower(MutableBigInteger addend, int n) { + MutableBigInteger a = new MutableBigInteger(addend); + if (a.offset + a.intLen >= n) { + a.offset = a.offset + a.intLen - n; + a.intLen = n; + } + a.normalize(); + add(a); + } + + /** + * Subtracts the smaller of this and b from the larger and places the + * result into this MutableBigInteger. + */ + int subtract(MutableBigInteger b) { + MutableBigInteger a = this; + + int[] result = value; + int sign = a.compare(b); + + if (sign == 0) { + reset(); + return 0; + } + if (sign < 0) { + MutableBigInteger tmp = a; + a = b; + b = tmp; + } + + int resultLen = a.intLen; + if (result.length < resultLen) + result = new int[resultLen]; + + long diff = 0; + int x = a.intLen; + int y = b.intLen; + int rstart = result.length - 1; + + // Subtract common parts of both numbers + while (y > 0) { + x--; y--; + + diff = (a.value[x+a.offset] & LONG_MASK) - + (b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32)); + result[rstart--] = (int)diff; + } + // Subtract remainder of longer number + while (x > 0) { + x--; + diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32)); + result[rstart--] = (int)diff; + } + + value = result; + intLen = resultLen; + offset = value.length - resultLen; + normalize(); + return sign; + } + + /** + * Subtracts the smaller of a and b from the larger and places the result + * into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no + * operation was performed. + */ + private int difference(MutableBigInteger b) { + MutableBigInteger a = this; + int sign = a.compare(b); + if (sign == 0) + return 0; + if (sign < 0) { + MutableBigInteger tmp = a; + a = b; + b = tmp; + } + + long diff = 0; + int x = a.intLen; + int y = b.intLen; + + // Subtract common parts of both numbers + while (y > 0) { + x--; y--; + diff = (a.value[a.offset+ x] & LONG_MASK) - + (b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32)); + a.value[a.offset+x] = (int)diff; + } + // Subtract remainder of longer number + while (x > 0) { + x--; + diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32)); + a.value[a.offset+x] = (int)diff; + } + + a.normalize(); + return sign; + } + + /** + * Multiply the contents of two MutableBigInteger objects. The result is + * placed into MutableBigInteger z. The contents of y are not changed. + */ + void multiply(MutableBigInteger y, MutableBigInteger z) { + int xLen = intLen; + int yLen = y.intLen; + int newLen = xLen + yLen; + + // Put z into an appropriate state to receive product + if (z.value.length < newLen) + z.value = new int[newLen]; + z.offset = 0; + z.intLen = newLen; + + // The first iteration is hoisted out of the loop to avoid extra add + long carry = 0; + for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) { + long product = (y.value[j+y.offset] & LONG_MASK) * + (value[xLen-1+offset] & LONG_MASK) + carry; + z.value[k] = (int)product; + carry = product >>> 32; + } + z.value[xLen-1] = (int)carry; + + // Perform the multiplication word by word + for (int i = xLen-2; i >= 0; i--) { + carry = 0; + for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) { + long product = (y.value[j+y.offset] & LONG_MASK) * + (value[i+offset] & LONG_MASK) + + (z.value[k] & LONG_MASK) + carry; + z.value[k] = (int)product; + carry = product >>> 32; + } + z.value[i] = (int)carry; + } + + // Remove leading zeros from product + z.normalize(); + } + + /** + * Multiply the contents of this MutableBigInteger by the word y. The + * result is placed into z. + */ + void mul(int y, MutableBigInteger z) { + if (y == 1) { + z.copyValue(this); + return; + } + + if (y == 0) { + z.clear(); + return; + } + + // Perform the multiplication word by word + long ylong = y & LONG_MASK; + int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1] + : z.value); + long carry = 0; + for (int i = intLen-1; i >= 0; i--) { + long product = ylong * (value[i+offset] & LONG_MASK) + carry; + zval[i+1] = (int)product; + carry = product >>> 32; + } + + if (carry == 0) { + z.offset = 1; + z.intLen = intLen; + } else { + z.offset = 0; + z.intLen = intLen + 1; + zval[0] = (int)carry; + } + z.value = zval; + } + + /** + * This method is used for division of an n word dividend by a one word + * divisor. The quotient is placed into quotient. The one word divisor is + * specified by divisor. + * + * @return the remainder of the division is returned. + * + */ + int divideOneWord(int divisor, MutableBigInteger quotient) { + long divisorLong = divisor & LONG_MASK; + + // Special case of one word dividend + if (intLen == 1) { + long dividendValue = value[offset] & LONG_MASK; + int q = (int) (dividendValue / divisorLong); + int r = (int) (dividendValue - q * divisorLong); + quotient.value[0] = q; + quotient.intLen = (q == 0) ? 0 : 1; + quotient.offset = 0; + return r; + } + + if (quotient.value.length < intLen) + quotient.value = new int[intLen]; + quotient.offset = 0; + quotient.intLen = intLen; + + // Normalize the divisor + int shift = Integer.numberOfLeadingZeros(divisor); + + int rem = value[offset]; + long remLong = rem & LONG_MASK; + if (remLong < divisorLong) { + quotient.value[0] = 0; + } else { + quotient.value[0] = (int)(remLong / divisorLong); + rem = (int) (remLong - (quotient.value[0] * divisorLong)); + remLong = rem & LONG_MASK; + } + int xlen = intLen; + while (--xlen > 0) { + long dividendEstimate = (remLong << 32) | + (value[offset + intLen - xlen] & LONG_MASK); + int q; + if (dividendEstimate >= 0) { + q = (int) (dividendEstimate / divisorLong); + rem = (int) (dividendEstimate - q * divisorLong); + } else { + long tmp = divWord(dividendEstimate, divisor); + q = (int) (tmp & LONG_MASK); + rem = (int) (tmp >>> 32); + } + quotient.value[intLen - xlen] = q; + remLong = rem & LONG_MASK; + } + + quotient.normalize(); + // Unnormalize + if (shift > 0) + return rem % divisor; + else + return rem; + } + + /** + * Calculates the quotient of this div b and places the quotient in the + * provided MutableBigInteger objects and the remainder object is returned. + * + */ + MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient) { + return divide(b,quotient,true); + } + + MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) { + if (b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD || + intLen - b.intLen < BigInteger.BURNIKEL_ZIEGLER_OFFSET) { + return divideKnuth(b, quotient, needRemainder); + } else { + return divideAndRemainderBurnikelZiegler(b, quotient); + } + } + + /** + * @see #divideKnuth(MutableBigInteger, MutableBigInteger, boolean) + */ + MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient) { + return divideKnuth(b,quotient,true); + } + + /** + * Calculates the quotient of this div b and places the quotient in the + * provided MutableBigInteger objects and the remainder object is returned. + * + * Uses Algorithm D from Knuth TAOCP Vol. 2, 3rd edition, section 4.3.1. + * Many optimizations to that algorithm have been adapted from the Colin + * Plumb C library. + * It special cases one word divisors for speed. The content of b is not + * changed. + * + */ + MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) { + if (b.intLen == 0) + throw new ArithmeticException("BigInteger divide by zero"); + + // Dividend is zero + if (intLen == 0) { + quotient.intLen = quotient.offset = 0; + return needRemainder ? new MutableBigInteger() : null; + } + + int cmp = compare(b); + // Dividend less than divisor + if (cmp < 0) { + quotient.intLen = quotient.offset = 0; + return needRemainder ? new MutableBigInteger(this) : null; + } + // Dividend equal to divisor + if (cmp == 0) { + quotient.value[0] = quotient.intLen = 1; + quotient.offset = 0; + return needRemainder ? new MutableBigInteger() : null; + } + + quotient.clear(); + // Special case one word divisor + if (b.intLen == 1) { + int r = divideOneWord(b.value[b.offset], quotient); + if(needRemainder) { + if (r == 0) + return new MutableBigInteger(); + return new MutableBigInteger(r); + } else { + return null; + } + } + + // Cancel common powers of two if we're above the KNUTH_POW2_* thresholds + if (intLen >= KNUTH_POW2_THRESH_LEN) { + int trailingZeroBits = Math.min(getLowestSetBit(), b.getLowestSetBit()); + if (trailingZeroBits >= KNUTH_POW2_THRESH_ZEROS*32) { + MutableBigInteger a = new MutableBigInteger(this); + b = new MutableBigInteger(b); + a.rightShift(trailingZeroBits); + b.rightShift(trailingZeroBits); + MutableBigInteger r = a.divideKnuth(b, quotient); + r.leftShift(trailingZeroBits); + return r; + } + } + + return divideMagnitude(b, quotient, needRemainder); + } + + /** + * Computes {@code this/b} and {@code this%b} using the + * Burnikel-Ziegler algorithm. + * This method implements algorithm 3 from pg. 9 of the Burnikel-Ziegler paper. + * The parameter beta was chosen to b 232 so almost all shifts are + * multiples of 32 bits.
+ * {@code this} and {@code b} must be nonnegative. + * @param b the divisor + * @param quotient output parameter for {@code this/b} + * @return the remainder + */ + MutableBigInteger divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient) { + int r = intLen; + int s = b.intLen; + + // Clear the quotient + quotient.offset = quotient.intLen = 0; + + if (r < s) { + return this; + } else { + // Unlike Knuth division, we don't check for common powers of two here because + // BZ already runs faster if both numbers contain powers of two and cancelling them has no + // additional benefit. + + // step 1: let m = min{2^k | (2^k)*BURNIKEL_ZIEGLER_THRESHOLD > s} + int m = 1 << (32-Integer.numberOfLeadingZeros(s/BigInteger.BURNIKEL_ZIEGLER_THRESHOLD)); + + int j = (s+m-1) / m; // step 2a: j = ceil(s/m) + int n = j * m; // step 2b: block length in 32-bit units + long n32 = 32L * n; // block length in bits + int sigma = (int) Math.max(0, n32 - b.bitLength()); // step 3: sigma = max{T | (2^T)*B < beta^n} + MutableBigInteger bShifted = new MutableBigInteger(b); + bShifted.safeLeftShift(sigma); // step 4a: shift b so its length is a multiple of n + MutableBigInteger aShifted = new MutableBigInteger (this); + aShifted.safeLeftShift(sigma); // step 4b: shift a by the same amount + + // step 5: t is the number of blocks needed to accommodate a plus one additional bit + int t = (int) ((aShifted.bitLength()+n32) / n32); + if (t < 2) { + t = 2; + } + + // step 6: conceptually split a into blocks a[t-1], ..., a[0] + MutableBigInteger a1 = aShifted.getBlock(t-1, t, n); // the most significant block of a + + // step 7: z[t-2] = [a[t-1], a[t-2]] + MutableBigInteger z = aShifted.getBlock(t-2, t, n); // the second to most significant block + z.addDisjoint(a1, n); // z[t-2] + + // do schoolbook division on blocks, dividing 2-block numbers by 1-block numbers + MutableBigInteger qi = new MutableBigInteger(); + MutableBigInteger ri; + for (int i=t-2; i > 0; i--) { + // step 8a: compute (qi,ri) such that z=b*qi+ri + ri = z.divide2n1n(bShifted, qi); + + // step 8b: z = [ri, a[i-1]] + z = aShifted.getBlock(i-1, t, n); // a[i-1] + z.addDisjoint(ri, n); + quotient.addShifted(qi, i*n); // update q (part of step 9) + } + // final iteration of step 8: do the loop one more time for i=0 but leave z unchanged + ri = z.divide2n1n(bShifted, qi); + quotient.add(qi); + + ri.rightShift(sigma); // step 9: a and b were shifted, so shift back + return ri; + } + } + + /** + * This method implements algorithm 1 from pg. 4 of the Burnikel-Ziegler paper. + * It divides a 2n-digit number by a n-digit number.
+ * The parameter beta is 232 so all shifts are multiples of 32 bits. + *
+ * {@code this} must be a nonnegative number such that {@code this.bitLength() <= 2*b.bitLength()} + * @param b a positive number such that {@code b.bitLength()} is even + * @param quotient output parameter for {@code this/b} + * @return {@code this%b} + */ + private MutableBigInteger divide2n1n(MutableBigInteger b, MutableBigInteger quotient) { + int n = b.intLen; + + // step 1: base case + if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) { + return divideKnuth(b, quotient); + } + + // step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less + MutableBigInteger aUpper = new MutableBigInteger(this); + aUpper.safeRightShift(32*(n/2)); // aUpper = [a1,a2,a3] + keepLower(n/2); // this = a4 + + // step 3: q1=aUpper/b, r1=aUpper%b + MutableBigInteger q1 = new MutableBigInteger(); + MutableBigInteger r1 = aUpper.divide3n2n(b, q1); + + // step 4: quotient=[r1,this]/b, r2=[r1,this]%b + addDisjoint(r1, n/2); // this = [r1,this] + MutableBigInteger r2 = divide3n2n(b, quotient); + + // step 5: let quotient=[q1,quotient] and return r2 + quotient.addDisjoint(q1, n/2); + return r2; + } + + /** + * This method implements algorithm 2 from pg. 5 of the Burnikel-Ziegler paper. + * It divides a 3n-digit number by a 2n-digit number.
+ * The parameter beta is 232 so all shifts are multiples of 32 bits.
+ *
+ * {@code this} must be a nonnegative number such that {@code 2*this.bitLength() <= 3*b.bitLength()} + * @param quotient output parameter for {@code this/b} + * @return {@code this%b} + */ + private MutableBigInteger divide3n2n(MutableBigInteger b, MutableBigInteger quotient) { + int n = b.intLen / 2; // half the length of b in ints + + // step 1: view this as [a1,a2,a3] where each ai is n ints or less; let a12=[a1,a2] + MutableBigInteger a12 = new MutableBigInteger(this); + a12.safeRightShift(32*n); + + // step 2: view b as [b1,b2] where each bi is n ints or less + MutableBigInteger b1 = new MutableBigInteger(b); + b1.safeRightShift(n * 32); + BigInteger b2 = b.getLower(n); + + MutableBigInteger r; + MutableBigInteger d; + if (compareShifted(b, n) < 0) { + // step 3a: if a1=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1 + quotient.ones(n); + a12.add(b1); + b1.leftShift(32*n); + a12.subtract(b1); + r = a12; + + // step 4: d=quotient*b2=(b2 << 32*n) - b2 + d = new MutableBigInteger(b2); + d.leftShift(32 * n); + d.subtract(new MutableBigInteger(b2)); + } + + // step 5: r = r*beta^n + a3 - d (paper says a4) + // However, don't subtract d until after the while loop so r doesn't become negative + r.leftShift(32 * n); + r.addLower(this, n); + + // step 6: add b until r>=d + while (r.compare(d) < 0) { + r.add(b); + quotient.subtract(MutableBigInteger.ONE); + } + r.subtract(d); + + return r; + } + + /** + * Returns a {@code MutableBigInteger} containing {@code blockLength} ints from + * {@code this} number, starting at {@code index*blockLength}.
+ * Used by Burnikel-Ziegler division. + * @param index the block index + * @param numBlocks the total number of blocks in {@code this} number + * @param blockLength length of one block in units of 32 bits + * @return + */ + private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) { + int blockStart = index * blockLength; + if (blockStart >= intLen) { + return new MutableBigInteger(); + } + + int blockEnd; + if (index == numBlocks-1) { + blockEnd = intLen; + } else { + blockEnd = (index+1) * blockLength; + } + if (blockEnd > intLen) { + return new MutableBigInteger(); + } + + int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart); + return new MutableBigInteger(newVal); + } + + /** @see BigInteger#bitLength() */ + long bitLength() { + if (intLen == 0) + return 0; + return intLen*32L - Integer.numberOfLeadingZeros(value[offset]); + } + + /** + * Internally used to calculate the quotient of this div v and places the + * quotient in the provided MutableBigInteger object and the remainder is + * returned. + * + * @return the remainder of the division will be returned. + */ + long divide(long v, MutableBigInteger quotient) { + if (v == 0) + throw new ArithmeticException("BigInteger divide by zero"); + + // Dividend is zero + if (intLen == 0) { + quotient.intLen = quotient.offset = 0; + return 0; + } + if (v < 0) + v = -v; + + int d = (int)(v >>> 32); + quotient.clear(); + // Special case on word divisor + if (d == 0) + return divideOneWord((int)v, quotient) & LONG_MASK; + else { + return divideLongMagnitude(v, quotient).toLong(); + } + } + + private static void copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift) { + int n2 = 32 - shift; + int c=src[srcFrom]; + for (int i=0; i < srcLen-1; i++) { + int b = c; + c = src[++srcFrom]; + dst[dstFrom+i] = (b << shift) | (c >>> n2); + } + dst[dstFrom+srcLen-1] = c << shift; + } + + /** + * Divide this MutableBigInteger by the divisor. + * The quotient will be placed into the provided quotient object & + * the remainder object is returned. + */ + private MutableBigInteger divideMagnitude(MutableBigInteger div, + MutableBigInteger quotient, + boolean needRemainder ) { + // assert div.intLen > 1 + // D1 normalize the divisor + int shift = Integer.numberOfLeadingZeros(div.value[div.offset]); + // Copy divisor value to protect divisor + final int dlen = div.intLen; + int[] divisor; + MutableBigInteger rem; // Remainder starts as dividend with space for a leading zero + if (shift > 0) { + divisor = new int[dlen]; + copyAndShift(div.value,div.offset,dlen,divisor,0,shift); + if (Integer.numberOfLeadingZeros(value[offset]) >= shift) { + int[] remarr = new int[intLen + 1]; + rem = new MutableBigInteger(remarr); + rem.intLen = intLen; + rem.offset = 1; + copyAndShift(value,offset,intLen,remarr,1,shift); + } else { + int[] remarr = new int[intLen + 2]; + rem = new MutableBigInteger(remarr); + rem.intLen = intLen+1; + rem.offset = 1; + int rFrom = offset; + int c=0; + int n2 = 32 - shift; + for (int i=1; i < intLen+1; i++,rFrom++) { + int b = c; + c = value[rFrom]; + remarr[i] = (b << shift) | (c >>> n2); + } + remarr[intLen+1] = c << shift; + } + } else { + divisor = Arrays.copyOfRange(div.value, div.offset, div.offset + div.intLen); + rem = new MutableBigInteger(new int[intLen + 1]); + System.arraycopy(value, offset, rem.value, 1, intLen); + rem.intLen = intLen; + rem.offset = 1; + } + + int nlen = rem.intLen; + + // Set the quotient size + final int limit = nlen - dlen + 1; + if (quotient.value.length < limit) { + quotient.value = new int[limit]; + quotient.offset = 0; + } + quotient.intLen = limit; + int[] q = quotient.value; + + + // Must insert leading 0 in rem if its length did not change + if (rem.intLen == nlen) { + rem.offset = 0; + rem.value[0] = 0; + rem.intLen++; + } + + int dh = divisor[0]; + long dhLong = dh & LONG_MASK; + int dl = divisor[1]; + + // D2 Initialize j + for (int j=0; j < limit-1; j++) { + // D3 Calculate qhat + // estimate qhat + int qhat = 0; + int qrem = 0; + boolean skipCorrection = false; + int nh = rem.value[j+rem.offset]; + int nh2 = nh + 0x80000000; + int nm = rem.value[j+1+rem.offset]; + + if (nh == dh) { + qhat = ~0; + qrem = nh + nm; + skipCorrection = qrem + 0x80000000 < nh2; + } else { + long nChunk = (((long)nh) << 32) | (nm & LONG_MASK); + if (nChunk >= 0) { + qhat = (int) (nChunk / dhLong); + qrem = (int) (nChunk - (qhat * dhLong)); + } else { + long tmp = divWord(nChunk, dh); + qhat = (int) (tmp & LONG_MASK); + qrem = (int) (tmp >>> 32); + } + } + + if (qhat == 0) + continue; + + if (!skipCorrection) { // Correct qhat + long nl = rem.value[j+2+rem.offset] & LONG_MASK; + long rs = ((qrem & LONG_MASK) << 32) | nl; + long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK); + + if (unsignedLongCompare(estProduct, rs)) { + qhat--; + qrem = (int)((qrem & LONG_MASK) + dhLong); + if ((qrem & LONG_MASK) >= dhLong) { + estProduct -= (dl & LONG_MASK); + rs = ((qrem & LONG_MASK) << 32) | nl; + if (unsignedLongCompare(estProduct, rs)) + qhat--; + } + } + } + + // D4 Multiply and subtract + rem.value[j+rem.offset] = 0; + int borrow = mulsub(rem.value, divisor, qhat, dlen, j+rem.offset); + + // D5 Test remainder + if (borrow + 0x80000000 > nh2) { + // D6 Add back + divadd(divisor, rem.value, j+1+rem.offset); + qhat--; + } + + // Store the quotient digit + q[j] = qhat; + } // D7 loop on j + // D3 Calculate qhat + // estimate qhat + int qhat = 0; + int qrem = 0; + boolean skipCorrection = false; + int nh = rem.value[limit - 1 + rem.offset]; + int nh2 = nh + 0x80000000; + int nm = rem.value[limit + rem.offset]; + + if (nh == dh) { + qhat = ~0; + qrem = nh + nm; + skipCorrection = qrem + 0x80000000 < nh2; + } else { + long nChunk = (((long) nh) << 32) | (nm & LONG_MASK); + if (nChunk >= 0) { + qhat = (int) (nChunk / dhLong); + qrem = (int) (nChunk - (qhat * dhLong)); + } else { + long tmp = divWord(nChunk, dh); + qhat = (int) (tmp & LONG_MASK); + qrem = (int) (tmp >>> 32); + } + } + if (qhat != 0) { + if (!skipCorrection) { // Correct qhat + long nl = rem.value[limit + 1 + rem.offset] & LONG_MASK; + long rs = ((qrem & LONG_MASK) << 32) | nl; + long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK); + + if (unsignedLongCompare(estProduct, rs)) { + qhat--; + qrem = (int) ((qrem & LONG_MASK) + dhLong); + if ((qrem & LONG_MASK) >= dhLong) { + estProduct -= (dl & LONG_MASK); + rs = ((qrem & LONG_MASK) << 32) | nl; + if (unsignedLongCompare(estProduct, rs)) + qhat--; + } + } + } + + + // D4 Multiply and subtract + int borrow; + rem.value[limit - 1 + rem.offset] = 0; + if(needRemainder) + borrow = mulsub(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset); + else + borrow = mulsubBorrow(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset); + + // D5 Test remainder + if (borrow + 0x80000000 > nh2) { + // D6 Add back + if(needRemainder) + divadd(divisor, rem.value, limit - 1 + 1 + rem.offset); + qhat--; + } + + // Store the quotient digit + q[(limit - 1)] = qhat; + } + + + if (needRemainder) { + // D8 Unnormalize + if (shift > 0) + rem.rightShift(shift); + rem.normalize(); + } + quotient.normalize(); + return needRemainder ? rem : null; + } + + /** + * Divide this MutableBigInteger by the divisor represented by positive long + * value. The quotient will be placed into the provided quotient object & + * the remainder object is returned. + */ + private MutableBigInteger divideLongMagnitude(long ldivisor, MutableBigInteger quotient) { + // Remainder starts as dividend with space for a leading zero + MutableBigInteger rem = new MutableBigInteger(new int[intLen + 1]); + System.arraycopy(value, offset, rem.value, 1, intLen); + rem.intLen = intLen; + rem.offset = 1; + + int nlen = rem.intLen; + + int limit = nlen - 2 + 1; + if (quotient.value.length < limit) { + quotient.value = new int[limit]; + quotient.offset = 0; + } + quotient.intLen = limit; + int[] q = quotient.value; + + // D1 normalize the divisor + int shift = Long.numberOfLeadingZeros(ldivisor); + if (shift > 0) { + ldivisor<<=shift; + rem.leftShift(shift); + } + + // Must insert leading 0 in rem if its length did not change + if (rem.intLen == nlen) { + rem.offset = 0; + rem.value[0] = 0; + rem.intLen++; + } + + int dh = (int)(ldivisor >>> 32); + long dhLong = dh & LONG_MASK; + int dl = (int)(ldivisor & LONG_MASK); + + // D2 Initialize j + for (int j = 0; j < limit; j++) { + // D3 Calculate qhat + // estimate qhat + int qhat = 0; + int qrem = 0; + boolean skipCorrection = false; + int nh = rem.value[j + rem.offset]; + int nh2 = nh + 0x80000000; + int nm = rem.value[j + 1 + rem.offset]; + + if (nh == dh) { + qhat = ~0; + qrem = nh + nm; + skipCorrection = qrem + 0x80000000 < nh2; + } else { + long nChunk = (((long) nh) << 32) | (nm & LONG_MASK); + if (nChunk >= 0) { + qhat = (int) (nChunk / dhLong); + qrem = (int) (nChunk - (qhat * dhLong)); + } else { + long tmp = divWord(nChunk, dh); + qhat =(int)(tmp & LONG_MASK); + qrem = (int)(tmp>>>32); + } + } + + if (qhat == 0) + continue; + + if (!skipCorrection) { // Correct qhat + long nl = rem.value[j + 2 + rem.offset] & LONG_MASK; + long rs = ((qrem & LONG_MASK) << 32) | nl; + long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK); + + if (unsignedLongCompare(estProduct, rs)) { + qhat--; + qrem = (int) ((qrem & LONG_MASK) + dhLong); + if ((qrem & LONG_MASK) >= dhLong) { + estProduct -= (dl & LONG_MASK); + rs = ((qrem & LONG_MASK) << 32) | nl; + if (unsignedLongCompare(estProduct, rs)) + qhat--; + } + } + } + + // D4 Multiply and subtract + rem.value[j + rem.offset] = 0; + int borrow = mulsubLong(rem.value, dh, dl, qhat, j + rem.offset); + + // D5 Test remainder + if (borrow + 0x80000000 > nh2) { + // D6 Add back + divaddLong(dh,dl, rem.value, j + 1 + rem.offset); + qhat--; + } + + // Store the quotient digit + q[j] = qhat; + } // D7 loop on j + + // D8 Unnormalize + if (shift > 0) + rem.rightShift(shift); + + quotient.normalize(); + rem.normalize(); + return rem; + } + + /** + * A primitive used for division by long. + * Specialized version of the method divadd. + * dh is a high part of the divisor, dl is a low part + */ + private int divaddLong(int dh, int dl, int[] result, int offset) { + long carry = 0; + + long sum = (dl & LONG_MASK) + (result[1+offset] & LONG_MASK); + result[1+offset] = (int)sum; + + sum = (dh & LONG_MASK) + (result[offset] & LONG_MASK) + carry; + result[offset] = (int)sum; + carry = sum >>> 32; + return (int)carry; + } + + /** + * This method is used for division by long. + * Specialized version of the method sulsub. + * dh is a high part of the divisor, dl is a low part + */ + private int mulsubLong(int[] q, int dh, int dl, int x, int offset) { + long xLong = x & LONG_MASK; + offset += 2; + long product = (dl & LONG_MASK) * xLong; + long difference = q[offset] - product; + q[offset--] = (int)difference; + long carry = (product >>> 32) + + (((difference & LONG_MASK) > + (((~(int)product) & LONG_MASK))) ? 1:0); + product = (dh & LONG_MASK) * xLong + carry; + difference = q[offset] - product; + q[offset--] = (int)difference; + carry = (product >>> 32) + + (((difference & LONG_MASK) > + (((~(int)product) & LONG_MASK))) ? 1:0); + return (int)carry; + } + + /** + * Compare two longs as if they were unsigned. + * Returns true iff one is bigger than two. + */ + private boolean unsignedLongCompare(long one, long two) { + return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE); + } + + /** + * This method divides a long quantity by an int to estimate + * qhat for two multi precision numbers. It is used when + * the signed value of n is less than zero. + * Returns long value where high 32 bits contain remainder value and + * low 32 bits contain quotient value. + */ + static long divWord(long n, int d) { + long dLong = d & LONG_MASK; + long r; + long q; + if (dLong == 1) { + q = (int)n; + r = 0; + return (r << 32) | (q & LONG_MASK); + } + + // Approximate the quotient and remainder + q = (n >>> 1) / (dLong >>> 1); + r = n - q*dLong; + + // Correct the approximation + while (r < 0) { + r += dLong; + q--; + } + while (r >= dLong) { + r -= dLong; + q++; + } + // n - q*dlong == r && 0 <= r not changed. The value of {@code this} is assumed + * to be non-negative. + * + * @implNote The implementation is based on the material in Henry S. Warren, + * Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 279-282. + * + * @throws ArithmeticException if the value returned by {@code bitLength()} + * overflows the range of {@code int}. + * @return the integer square root of {@code this} + * @since 9 + */ + MutableBigInteger sqrt() { + // Special cases. + if (this.isZero()) { + return new MutableBigInteger(0); + } else if (this.value.length == 1 + && (this.value[0] & LONG_MASK) < 4) { // result is unity + return ONE; + } + + if (bitLength() <= 63) { + // Initial estimate is the square root of the positive long value. + long v = new BigInteger(this.value, 1).longValueExact(); + long xk = (long)Math.floor(Math.sqrt(v)); + + // Refine the estimate. + do { + long xk1 = (xk + v/xk)/2; + + // Terminate when non-decreasing. + if (xk1 >= xk) { + return new MutableBigInteger(new int[] { + (int)(xk >>> 32), (int)(xk & LONG_MASK) + }); + } + + xk = xk1; + } while (true); + } else { + // Set up the initial estimate of the iteration. + + // Obtain the bitLength > 63. + int bitLength = (int) this.bitLength(); + if (bitLength != this.bitLength()) { + throw new ArithmeticException("bitLength() integer overflow"); + } + + // Determine an even valued right shift into positive long range. + int shift = bitLength - 63; + if (shift % 2 == 1) { + shift++; + } + + // Shift the value into positive long range. + MutableBigInteger xk = new MutableBigInteger(this); + xk.rightShift(shift); + xk.normalize(); + + // Use the square root of the shifted value as an approximation. + double d = new BigInteger(xk.value, 1).doubleValue(); + BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d))); + xk = new MutableBigInteger(bi.mag); + + // Shift the approximate square root back into the original range. + xk.leftShift(shift / 2); + + // Refine the estimate. + MutableBigInteger xk1 = new MutableBigInteger(); + do { + // xk1 = (xk + n/xk)/2 + this.divide(xk, xk1, false); + xk1.add(xk); + xk1.rightShift(1); + + // Terminate when non-decreasing. + if (xk1.compare(xk) >= 0) { + return xk; + } + + // xk = xk1 + xk.copyValue(xk1); + + xk1.reset(); + } while (true); + } + } + + /** + * Calculate GCD of this and b. This and b are changed by the computation. + */ + MutableBigInteger hybridGCD(MutableBigInteger b) { + // Use Euclid's algorithm until the numbers are approximately the + // same length, then use the binary GCD algorithm to find the GCD. + MutableBigInteger a = this; + MutableBigInteger q = new MutableBigInteger(); + + while (b.intLen != 0) { + if (Math.abs(a.intLen - b.intLen) < 2) + return a.binaryGCD(b); + + MutableBigInteger r = a.divide(b, q); + a = b; + b = r; + } + return a; + } + + /** + * Calculate GCD of this and v. + * Assumes that this and v are not zero. + */ + private MutableBigInteger binaryGCD(MutableBigInteger v) { + // Algorithm B from Knuth TAOCP Vol. 2, 3rd edition, section 4.5.2 + MutableBigInteger u = this; + MutableBigInteger r = new MutableBigInteger(); + + // step B1 + int s1 = u.getLowestSetBit(); + int s2 = v.getLowestSetBit(); + int k = (s1 < s2) ? s1 : s2; + if (k != 0) { + u.rightShift(k); + v.rightShift(k); + } + + // step B2 + boolean uOdd = (k == s1); + MutableBigInteger t = uOdd ? v: u; + int tsign = uOdd ? -1 : 1; + + int lb; + while ((lb = t.getLowestSetBit()) >= 0) { + // steps B3 and B4 + t.rightShift(lb); + // step B5 + if (tsign > 0) + u = t; + else + v = t; + + // Special case one word numbers + if (u.intLen < 2 && v.intLen < 2) { + int x = u.value[u.offset]; + int y = v.value[v.offset]; + x = binaryGcd(x, y); + r.value[0] = x; + r.intLen = 1; + r.offset = 0; + if (k > 0) + r.leftShift(k); + return r; + } + + // step B6 + if ((tsign = u.difference(v)) == 0) + break; + t = (tsign >= 0) ? u : v; + } + + if (k > 0) + u.leftShift(k); + return u; + } + + /** + * Calculate GCD of a and b interpreted as unsigned integers. + */ + static int binaryGcd(int a, int b) { + if (b == 0) + return a; + if (a == 0) + return b; + + // Right shift a & b till their last bits equal to 1. + int aZeros = Integer.numberOfTrailingZeros(a); + int bZeros = Integer.numberOfTrailingZeros(b); + a >>>= aZeros; + b >>>= bZeros; + + int t = (aZeros < bZeros ? aZeros : bZeros); + + while (a != b) { + if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned + a -= b; + a >>>= Integer.numberOfTrailingZeros(a); + } else { + b -= a; + b >>>= Integer.numberOfTrailingZeros(b); + } + } + return a< 64) + return euclidModInverse(k); + + int t = inverseMod32(value[offset+intLen-1]); + + if (k < 33) { + t = (k == 32 ? t : t & ((1 << k) - 1)); + return new MutableBigInteger(t); + } + + long pLong = (value[offset+intLen-1] & LONG_MASK); + if (intLen > 1) + pLong |= ((long)value[offset+intLen-2] << 32); + long tLong = t & LONG_MASK; + tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step + tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1)); + + MutableBigInteger result = new MutableBigInteger(new int[2]); + result.value[0] = (int)(tLong >>> 32); + result.value[1] = (int)tLong; + result.intLen = 2; + result.normalize(); + return result; + } + + /** + * Returns the multiplicative inverse of val mod 2^32. Assumes val is odd. + */ + static int inverseMod32(int val) { + // Newton's iteration! + int t = val; + t *= 2 - val*t; + t *= 2 - val*t; + t *= 2 - val*t; + t *= 2 - val*t; + return t; + } + + /** + * Returns the multiplicative inverse of val mod 2^64. Assumes val is odd. + */ + static long inverseMod64(long val) { + // Newton's iteration! + long t = val; + t *= 2 - val*t; + t *= 2 - val*t; + t *= 2 - val*t; + t *= 2 - val*t; + t *= 2 - val*t; + assert(t * val == 1); + return t; + } + + /** + * Calculate the multiplicative inverse of 2^k mod mod, where mod is odd. + */ + static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) { + // Copy the mod to protect original + return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k); + } + + /** + * Calculate the multiplicative inverse of this modulo mod, where the mod + * argument is odd. This and mod are not changed by the calculation. + * + * This method implements an algorithm due to Richard Schroeppel, that uses + * the same intermediate representation as Montgomery Reduction + * ("Montgomery Form"). The algorithm is described in an unpublished + * manuscript entitled "Fast Modular Reciprocals." + */ + private MutableBigInteger modInverse(MutableBigInteger mod) { + MutableBigInteger p = new MutableBigInteger(mod); + MutableBigInteger f = new MutableBigInteger(this); + MutableBigInteger g = new MutableBigInteger(p); + SignedMutableBigInteger c = new SignedMutableBigInteger(1); + SignedMutableBigInteger d = new SignedMutableBigInteger(); + MutableBigInteger temp = null; + SignedMutableBigInteger sTemp = null; + + int k = 0; + // Right shift f k times until odd, left shift d k times + if (f.isEven()) { + int trailingZeros = f.getLowestSetBit(); + f.rightShift(trailingZeros); + d.leftShift(trailingZeros); + k = trailingZeros; + } + + // The Almost Inverse Algorithm + while (!f.isOne()) { + // If gcd(f, g) != 1, number is not invertible modulo mod + if (f.isZero()) + throw new ArithmeticException("BigInteger not invertible."); + + // If f < g exchange f, g and c, d + if (f.compare(g) < 0) { + temp = f; f = g; g = temp; + sTemp = d; d = c; c = sTemp; + } + + // If f == g (mod 4) + if (((f.value[f.offset + f.intLen - 1] ^ + g.value[g.offset + g.intLen - 1]) & 3) == 0) { + f.subtract(g); + c.signedSubtract(d); + } else { // If f != g (mod 4) + f.add(g); + c.signedAdd(d); + } + + // Right shift f k times until odd, left shift d k times + int trailingZeros = f.getLowestSetBit(); + f.rightShift(trailingZeros); + d.leftShift(trailingZeros); + k += trailingZeros; + } + + if (c.compare(p) >= 0) { // c has a larger magnitude than p + MutableBigInteger remainder = c.divide(p, + new MutableBigInteger()); + // The previous line ignores the sign so we copy the data back + // into c which will restore the sign as needed (and converts + // it back to a SignedMutableBigInteger) + c.copyValue(remainder); + } + + if (c.sign < 0) { + c.signedAdd(p); + } + + return fixup(c, p, k); + } + + /** + * The Fixup Algorithm + * Calculates X such that X = C * 2^(-k) (mod P) + * Assumes C

> 5; i < numWords; i++) { + // V = R * c (mod 2^j) + int v = r * c.value[c.offset + c.intLen-1]; + // c = c + (v * p) + p.mul(v, temp); + c.add(temp); + // c = c / 2^j + c.intLen--; + } + int numBits = k & 0x1f; + if (numBits != 0) { + // V = R * c (mod 2^j) + int v = r * c.value[c.offset + c.intLen-1]; + v &= ((1<= 0) + c = c.divide(p, new MutableBigInteger()); + + return c; + } + + /** + * Uses the extended Euclidean algorithm to compute the modInverse of base + * mod a modulus that is a power of 2. The modulus is 2^k. + */ + MutableBigInteger euclidModInverse(int k) { + MutableBigInteger b = new MutableBigInteger(1); + b.leftShift(k); + MutableBigInteger mod = new MutableBigInteger(b); + + MutableBigInteger a = new MutableBigInteger(this); + MutableBigInteger q = new MutableBigInteger(); + MutableBigInteger r = b.divide(a, q); + + MutableBigInteger swapper = b; + // swap b & r + b = r; + r = swapper; + + MutableBigInteger t1 = new MutableBigInteger(q); + MutableBigInteger t0 = new MutableBigInteger(1); + MutableBigInteger temp = new MutableBigInteger(); + + while (!b.isOne()) { + r = a.divide(b, q); + + if (r.intLen == 0) + throw new ArithmeticException("BigInteger not invertible."); + + swapper = r; + a = swapper; + + if (q.intLen == 1) + t1.mul(q.value[q.offset], temp); + else + q.multiply(t1, temp); + swapper = q; + q = temp; + temp = swapper; + t0.add(q); + + if (a.isOne()) + return t0; + + r = b.divide(a, q); + + if (r.intLen == 0) + throw new ArithmeticException("BigInteger not invertible."); + + swapper = b; + b = r; + + if (q.intLen == 1) + t0.mul(q.value[q.offset], temp); + else + q.multiply(t0, temp); + swapper = q; q = temp; temp = swapper; + + t1.add(q); + } + mod.subtract(t1); + return mod; + } +} diff --git a/egklib/src/jvmMain/java/org/cryptobiotic/bigint/SignedMutableBigInteger.java b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/SignedMutableBigInteger.java new file mode 100644 index 00000000..671712e8 --- /dev/null +++ b/egklib/src/jvmMain/java/org/cryptobiotic/bigint/SignedMutableBigInteger.java @@ -0,0 +1,91 @@ +package org.cryptobiotic.bigint; + +class SignedMutableBigInteger extends MutableBigInteger { + + /** + * The sign of this MutableBigInteger. + */ + int sign = 1; + + // Constructors + + /** + * The default constructor. An empty MutableBigInteger is created with + * a one word capacity. + */ + SignedMutableBigInteger() { + super(); + } + + /** + * Construct a new MutableBigInteger with a magnitude specified by + * the int val. + */ + SignedMutableBigInteger(int val) { + super(val); + } + + /** + * Construct a new MutableBigInteger with a magnitude equal to the + * specified MutableBigInteger. + */ + SignedMutableBigInteger(MutableBigInteger val) { + super(val); + } + + // Arithmetic Operations + + /** + * Signed addition built upon unsigned add and subtract. + */ + void signedAdd(SignedMutableBigInteger addend) { + if (sign == addend.sign) + add(addend); + else + sign = sign * subtract(addend); + + } + + /** + * Signed addition built upon unsigned add and subtract. + */ + void signedAdd(MutableBigInteger addend) { + if (sign == 1) + add(addend); + else + sign = sign * subtract(addend); + + } + + /** + * Signed subtraction built upon unsigned add and subtract. + */ + void signedSubtract(SignedMutableBigInteger addend) { + if (sign == addend.sign) + sign = sign * subtract(addend); + else + add(addend); + + } + + /** + * Signed subtraction built upon unsigned add and subtract. + */ + void signedSubtract(MutableBigInteger addend) { + if (sign == 1) + sign = sign * subtract(addend); + else + add(addend); + if (intLen == 0) + sign = 1; + } + + /** + * Print out the first intLen ints of this MutableBigInteger's value + * array starting at offset. + */ + public String toString() { + return this.toBigInteger(sign).toString(); + } + +} diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/LargeIntegerSimModPowTab.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/LargeIntegerSimModPowTab.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/LargeIntegerSimModPowTab.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/LargeIntegerSimModPowTab.kt index cd43f720..eafa8390 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/LargeIntegerSimModPowTab.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/LargeIntegerSimModPowTab.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp import java.math.BigInteger import java.util.* diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms.kt index 00f0f5bd..8b49dcfd 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp // there are 256 cvints when using ElementModQ diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms1.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms1.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms1.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms1.kt index f1e60e32..760ab85f 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms1.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms1.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp // The job is to find an addition chain for all the column vectors. // I think we can just use CVInts. diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms2.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms2.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms2.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms2.kt index 492b1874..75cf3a11 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/MakeTerms2.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/MakeTerms2.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp // The job is to find an addition chain for all the column vectors. // I think we can just use BitVectors. diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/PGroupSimExpTab.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/PGroupSimExpTab.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/PGroupSimExpTab.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/PGroupSimExpTab.kt index 99f6f549..b0e6668e 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/PGroupSimExpTab.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/PGroupSimExpTab.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp import java.math.BigInteger import java.util.* diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/SMexp.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/SMexp.kt similarity index 98% rename from egklib/src/jvmMain/kotlin/electionguard/core/SMexp.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/SMexp.kt index 0d72d91a..4e03ed60 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/SMexp.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/SMexp.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp // Simultaneous Multiple exponentiation. Experimental. // Algorithm 14.88 in Handbook (menezes et al) diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/VACalg.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/VACalg.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/VACalg.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/VACalg.kt index e41c0369..72bdb4ee 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/VACalg.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/VACalg.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp // Use 14.88 to generate a vector addition chain // Then use Algorithm 14.104 in Handbook (menezes et al) diff --git a/egklib/src/jvmMain/kotlin/electionguard/core/VACutil.kt b/egklib/src/jvmMain/kotlin/electionguard/exp/VACutil.kt similarity index 99% rename from egklib/src/jvmMain/kotlin/electionguard/core/VACutil.kt rename to egklib/src/jvmMain/kotlin/electionguard/exp/VACutil.kt index 82f1eba4..0d44e424 100644 --- a/egklib/src/jvmMain/kotlin/electionguard/core/VACutil.kt +++ b/egklib/src/jvmMain/kotlin/electionguard/exp/VACutil.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp private val byteZ = 0.toByte() diff --git a/egklib/src/jvmTest/kotlin/electionguard/core/FEexpTest.kt b/egklib/src/jvmTest/kotlin/electionguard/exp/FEexpTest.kt similarity index 98% rename from egklib/src/jvmTest/kotlin/electionguard/core/FEexpTest.kt rename to egklib/src/jvmTest/kotlin/electionguard/exp/FEexpTest.kt index b9d29c29..12c65dc6 100644 --- a/egklib/src/jvmTest/kotlin/electionguard/core/FEexpTest.kt +++ b/egklib/src/jvmTest/kotlin/electionguard/exp/FEexpTest.kt @@ -1,5 +1,6 @@ -package electionguard.core +package electionguard.exp +import electionguard.core.* import electionguard.util.sigfig import org.junit.jupiter.api.Test import kotlin.test.assertEquals diff --git a/egklib/src/jvmTest/kotlin/electionguard/core/SMexpTest.kt b/egklib/src/jvmTest/kotlin/electionguard/exp/SMexpTest.kt similarity index 93% rename from egklib/src/jvmTest/kotlin/electionguard/core/SMexpTest.kt rename to egklib/src/jvmTest/kotlin/electionguard/exp/SMexpTest.kt index fd19b98e..5f17e0c1 100644 --- a/egklib/src/jvmTest/kotlin/electionguard/core/SMexpTest.kt +++ b/egklib/src/jvmTest/kotlin/electionguard/exp/SMexpTest.kt @@ -1,5 +1,9 @@ -package electionguard.core +package electionguard.exp +import electionguard.core.getSystemTimeInMillis +import electionguard.core.productionGroup +import electionguard.core.randomElementModQ +import electionguard.core.toElementModQ import org.junit.jupiter.api.Test import kotlin.test.assertEquals diff --git a/egklib/src/jvmTest/kotlin/electionguard/core/VACUtilTest.kt b/egklib/src/jvmTest/kotlin/electionguard/exp/VACUtilTest.kt similarity index 98% rename from egklib/src/jvmTest/kotlin/electionguard/core/VACUtilTest.kt rename to egklib/src/jvmTest/kotlin/electionguard/exp/VACUtilTest.kt index 10a1fbae..0e83e86e 100644 --- a/egklib/src/jvmTest/kotlin/electionguard/core/VACUtilTest.kt +++ b/egklib/src/jvmTest/kotlin/electionguard/exp/VACUtilTest.kt @@ -1,4 +1,4 @@ -package electionguard.core +package electionguard.exp import org.junit.jupiter.api.Test import kotlin.test.* diff --git a/egklib/src/jvmTest/kotlin/electionguard/core/VACalgTest.kt b/egklib/src/jvmTest/kotlin/electionguard/exp/VACalgTest.kt similarity index 86% rename from egklib/src/jvmTest/kotlin/electionguard/core/VACalgTest.kt rename to egklib/src/jvmTest/kotlin/electionguard/exp/VACalgTest.kt index acb6ab61..6e7a9651 100644 --- a/egklib/src/jvmTest/kotlin/electionguard/core/VACalgTest.kt +++ b/egklib/src/jvmTest/kotlin/electionguard/exp/VACalgTest.kt @@ -1,5 +1,6 @@ -package electionguard.core +package electionguard.exp +import electionguard.core.* import electionguard.util.sigfig import org.junit.jupiter.api.Test import kotlin.test.assertEquals @@ -124,11 +125,19 @@ class VACalgTest { } @Test - fun testVACtiming() { + fun testVACbases() { val nexps = 30 runVACtiming(nexps, 10) runVACtiming(nexps, 100) - runVACtiming(nexps, 1000) + runVACtiming(nexps, 10000) + } + + @Test + fun testVACexps() { + val nbases = 1000 + //runVACtiming(10, nbases) + //runVACtiming(20, nbases) + runVACtiming(30, 100) } fun runVACtiming(nexps : Int, nbases: Int) { @@ -189,4 +198,22 @@ runFEtiming nrows = 12, nbases = 100 timeFE = 31 + 5728 = 5759, timePowP = 3736 ratio = 1.5 runFEtiming nrows = 16, nbases = 100 timeFE = 190 + 19006 = 19196, timePowP = 5075 ratio = 3.7 + */ + +/* +runVACtiming nexps = 30, nbases = 10 +EAmatrix k= 30 width=256, bitsOn=3882 + k = 30, width= 256, chain size = 2086 + timeVAC = 4504 + 1484 = 5988, timePowP = 1069 ratio = 5.6 +runVACtiming nexps = 30, nbases = 100 +EAmatrix k= 30 width=256, bitsOn=3859 + k = 30, width= 256, chain size = 2100 + timeVAC = 4323 + 11282 = 15605, timePowP = 10245 ratio = 1.5 +runVACtiming nexps = 30, nbases = 1000 +EAmatrix k= 30 width=256, bitsOn=3863 + k = 30, width= 256, chain size = 2073 + timeVAC = 4591 + 108266 = 112857, timePowP = 97069 ratio = 1.1 + runVACtiming nexps = 30, nbases = 10000 + k = 30, width= 256, chain size = 2084 + timeVAC = 4698 + 1068567 = 1073265, timePowP = 958004 ratio = 1.1 */ \ No newline at end of file