Skip to content

vpagonis/CRCbook

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains all the Python scripts from the book:

Mathematical Methods using Python: Applications in Physics and Engineering 1st Edition

by Vasilis Pagonis and Christopher Wayne Kulp

CRC Press, 2024

This book will be released on May 14, 2024

Book website at Amazon: https://www.amazon.com/Mathematical-Methods-using-Python-Applications/dp/1032278366


ABOUT THIS BOOK

This advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc.

An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses.

Key Features:

· A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses.

· Uses examples and models from physical and engineering systems, to motivate the mathematics being taught.

· Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy).

Vasilis Pagonis is Professor of Physics Emeritus at McDaniel College, Maryland, USA. His research area is applications of thermally and optically stimulated luminescence. He taught courses in mathematical physics, classical and quantum mechanics, analog and digital electronics and numerous general science courses. Dr. Pagonis’ resume lists more than 200 peer-reviewed publications in international journals. He is currently associate editor of the journal Radiation Measurements. He is co-author with Christopher Kulp of the undergraduate textbook “Classical Mechanics: a computational approach, with examples in Python and Mathematica” (CRC Press, 2020). He has also co-authored four graduate-level textbooks in the field of luminescence dosimetry, and most recently published the book “Luminescence Signal analysis using Python” (Springer, 2022).

Christopher W. Kulp is the John P. Graham Teaching Professor of Physics at Lycoming College. He has been teaching undergraduate physics at all levels for 20 years. Dr. Kulp’s research focuses on modelling complex systems, time series analysis, and machine learning. He has published 30 peer-reviewed papers in international journals, many of which include student co-authors. He is also co-author of the undergraduate textbook “Classical Mechanics: a computational approach, with examples in Python and Mathematica” (CRC Press, 2020).

TO OUR READERS

We have kept the number of required external Python packages intentionally at a minimum, so that newcomers to Python can follow the codes easily.

All figures in this book were produced using the scripts in this repository, so that users know immediately what to expect when they run the scripts.

Experienced programmers will find out that they can improve the codes given here, and it is of course possible to make the codes more compact and elegant. However, we chose to provide codes which are simple and clear, and which can be easily modified for the purposes of the reader, rather than attempting to create compact codes which may be difficult to follow and modify.

We hope you will find the scripts useful and that you will enjoy running and modifying the various files. If you find that some script is not clear or has inaccuracies, kindly let me know at vpagonis@mcdaniel.edu

Enjoy!

Vasilis Pagonis

Professor of Physics Emeritus, McDaniel College, USA

Christopher W. Kulp

Professor of Physics, Lycoming College, USA

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published