-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-order-more.tex
1841 lines (1587 loc) · 76.7 KB
/
chap-order-more.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{More on order theory}
\section{Straight maps and separation subsets}
\subsection{Straight maps}
\begin{defn}
\index{order reflecting}An \emph{order reflecting} map from a poset~$\mathfrak{A}$ to a poset~$\mathfrak{B}$
is such a function~$f$ that (for every $x,y\in\mathfrak{A}$)
\[ fx\sqsubseteq fy \Rightarrow x\sqsubseteq y. \]
\end{defn}
\begin{obvious}
Order embeddings are exactly the same as monotone and order reflecting maps.
\end{obvious}
\begin{defn}
\index{straight map}Let $f$ be a monotone map from a meet-semilattice
$\mathfrak{A}$ to some poset $\mathfrak{B}$. I call $f$ a \emph{straight}
map when
\[
\forall a,b\in\mathfrak{A}:(fa\sqsubseteq fb\Rightarrow fa=f(a\sqcap b)).
\]
\end{defn}
\begin{prop}
The following statements are equivalent for a monotone map~$f$:
\begin{enumerate}
\item \label{str-def}$f$ is a straight map.
\item \label{str-le-le}$\forall a,b\in\mathfrak{A}:(fa\sqsubseteq fb\Rightarrow fa\sqsubseteq f(a\sqcap b))$.
\item \label{str-le-ng}$\forall a,b\in\mathfrak{A}:(fa\sqsubseteq fb\Rightarrow fa\nsqsupset f(a\sqcap b))$.
\item \label{str-g-nle}$\forall a,b\in\mathfrak{A}:(fa\sqsupset f(a\sqcap b)\Rightarrow fa\nsqsubseteq fb)$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item [{\ref{str-def}$\Leftrightarrow$\ref{str-le-le}$\Leftrightarrow$\ref{str-le-ng}}] Due
$fa\sqsupseteq f(a\sqcap b)$.
\item [{\ref{str-le-ng}$\Leftrightarrow$\ref{str-g-nle}}] Obvious.
\end{description}
\end{proof}
\begin{rem}
The definition of straight map can be generalized for any poset $\mathfrak{A}$
by the formula
\[
\forall a,b\in\mathfrak{A}:(fa\sqsubseteq fb\Rightarrow\exists c\in\mathfrak{A}:(c\sqsubseteq a\land c\sqsubseteq b\land fa=fc)).
\]
This generalization is not yet researched however.\end{rem}
\begin{prop}
Let $f$ be a monotone map from a meet-semilattice $\mathfrak{A}$
to a meet-semilattice $\mathfrak{B}$. If
\[
\forall a,b\in\mathfrak{A}:f(a\sqcap b)=fa\sqcap fb
\]
then $f$ is a straight map.\end{prop}
\begin{proof}
Let $fa\sqsubseteq fb$. Then $f(a\sqcap b)=fa\sqcap fb=fa$.\end{proof}
\begin{prop}
Let $f$ be a monotone map from a meet-semilattice $\mathfrak{A}$
to some poset $\mathfrak{B}$. If $f$ is order reflecting,
then $f$ is a straight map.\end{prop}
\begin{proof}
$fa\sqsubseteq fb\Rightarrow a\sqsubseteq b\Rightarrow a=a\sqcap b\Rightarrow fa=f(a\sqcap b)$.\end{proof}
The following theorem is the main reason of why we are interested in straight maps:
\begin{thm}
If $f$ is a straight monotone map from a meet-semilattice $\mathfrak{A}$
then the following statements are equivalent:
\begin{enumerate}
\item \label{stra-inj}$f$ is an injection.
\item \label{stra-sqe-sqe}$f$ is order reflecting.
\item \label{stra-sq-sq}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow fa\sqsubset fb)$.
\item \label{stra-sq-ne}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow fa\neq fb)$.
\item \label{stra-sq-nsqe}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow fa\nsqsupseteq fb)$.
\item \label{stra-sqe-nsq}$\forall a,b\in\mathfrak{A}:(fa\sqsubseteq fb\Rightarrow a\nsqsupset b)$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{stra-inj}$\Rightarrow$\ref{stra-sq-sq}}] Let $a,b\in\mathfrak{A}$.
Let $fa=fb\Rightarrow a=b$. Let $a\sqsubset b$. $fa\neq fb$ because
$a\neq b$. $fa\sqsubseteq fb$ because $a\sqsubseteq b$. So $fa\sqsubset fb$.
\item [{\ref{stra-sqe-sqe}$\Rightarrow$\ref{stra-inj}}] Let $a,b\in\mathfrak{A}$.
Let $fa\sqsubseteq fb\Rightarrow a\sqsubseteq b$. Let $fa=fb$. Then
$a\sqsubseteq b$ and $b\sqsubseteq a$ and consequently $a=b$.
\item [{\ref{stra-sq-sq}$\Rightarrow$\ref{stra-sqe-sqe}}] Let $\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow fa\sqsubset fb)$.
Let $a\nsqsubseteq b$. Then $a\sqsupset a\sqcap b$. So $fa\sqsupset f(a\sqcap b)$.
If $fa\sqsubseteq fb$ then $fa\sqsubseteq f(a\sqcap b)$ what is
a contradiction.
\item [{\ref{stra-sq-sq}$\Rightarrow$\ref{stra-sq-nsqe}$\Rightarrow$\ref{stra-sq-ne}}] Obvious.
\item [{\ref{stra-sq-ne}$\Rightarrow$\ref{stra-sq-sq}}] Because $a\sqsubset b\Rightarrow a\sqsubseteq b\Rightarrow fa\sqsubseteq fb$.
\item [{\ref{stra-sq-nsqe}$\Leftrightarrow$\ref{stra-sqe-nsq}}] Obvious.
\end{description}
\end{proof}
\subsection{\label{sep-and-full}Separation subsets and full stars}
\begin{defn}
$\corestar_{Y}a=\setcond{x\in Y}{x\nasymp a}$ for an element $a$
of a poset $\mathfrak{A}$ and $Y\in\subsets\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{star!full}\emph{Full star} of $a\in\mathfrak{A}$ is $\fullstar a=\corestar_{\mathfrak{A}}a$.\end{defn}
\begin{prop}
If $\mathfrak{A}$ is a meet-semilattice, then $\fullstar$ is a straight
monotone map.\end{prop}
\begin{proof}
Monotonicity is obvious. Let $\fullstar a\nsqsubseteq\fullstar(a\sqcap b)$.
Then it exists $x\in\fullstar a$ such that $x\notin\fullstar(a\sqcap b)$.
So $x\sqcap a\notin\fullstar b$ but $x\sqcap a\in\fullstar a$ and
consequently $\fullstar a\nsqsubseteq\fullstar b$.\end{proof}
\begin{defn}
\index{separation subset}A \emph{separation subset} of a poset $\mathfrak{A}$
is such its subset $Y$ that
\[
\forall a,b\in\mathfrak{A}:(\corestar_{Y}a=\corestar_{Y}b\Rightarrow a=b).
\]
\end{defn}
\begin{defn}
\index{separable}\index{poset!separable}I call \emph{separable} such poset
that $\fullstar$ is an injection.\end{defn}
\begin{defn}
\index{separable}\index{poset!strongly separable}I call \emph{strongly separable} such poset
that $\fullstar$ is order reflecting.\end{defn}
\begin{obvious}
A poset is separable iff it has a separation subset.\end{obvious}
\begin{obvious}
A poset is strongly separable iff $\star$ is order embedding.\end{obvious}
\begin{obvious}
Strong separability implies separability.\end{obvious}
\begin{defn}
\index{disjunction property of Wallman}A poset $\mathfrak{A}$ has
\emph{disjunction property of Wallman} iff for any $a,b\in\mathfrak{A}$
either $b\sqsubseteq a$ or there exists a non-least element $c\sqsubseteq b$
such that $a\asymp c$.\end{defn}
\begin{thm}
\label{msl-sep-conds}For a meet-semilattice with least element the
following statements are equivalent:
\begin{enumerate}
\item \label{la1}$\mathfrak{A}$ is separable.
\item \label{la2}$\mathfrak{A}$ is strongly separable.
\item \label{la3}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow\fullstar a\sqsubset\fullstar b)$.
\item \label{la4}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow\fullstar a\neq\fullstar b)$.
\item \label{la5}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow\fullstar a\nsqsupseteq\fullstar b)$.
\item \label{la6}$\forall a,b\in\mathfrak{A}:(\fullstar a\sqsubseteq\fullstar b\Rightarrow a\nsqsupset b)$.
\item \label{la7}$\mathfrak{A}$ conforms to Wallman's disjunction property.
\item \label{la8}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow\exists c\in\mathfrak{A}\setminus\{\bot\}:(c\asymp a\land c\sqsubseteq b))$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{la1}$\Leftrightarrow$\ref{la2}$\Leftrightarrow$\ref{la3}$\Leftrightarrow$\ref{la4}$\Leftrightarrow$\ref{la5}$\Leftrightarrow$\ref{la6}}] By
the above theorem.
\item [{\ref{la8}$\Rightarrow$\ref{la4}}] Let property~\ref{la8} hold.
Let $a\sqsubset b$. Then it exists element $c\sqsubseteq b$ such
that $c\neq\bot$ and $c\sqcap a=\bot$. But $c\sqcap b\neq\bot$.
So $\fullstar a\neq\fullstar b$.
\item [{\ref{la2}$\Rightarrow$\ref{la7}}] Let property~\ref{la2} hold.
Let $a\nsqsubseteq b$. Then $\fullstar a\nsqsubseteq\fullstar b$
that is it there exists $c\in\fullstar a$ such that $c\notin\fullstar b$,
in other words $c\sqcap a\neq\bot$ and $c\sqcap b=\bot$. Let $d=c\sqcap a$.
Then $d\sqsubseteq a$ and $d\neq\bot$ and $d\sqcap b=\bot$. So
disjunction property of Wallman holds.
\item [{\ref{la7}$\Rightarrow$\ref{la8}}] Obvious.
\item [{\ref{la8}$\Rightarrow$\ref{la7}}] Let $b\nsqsubseteq a$. Then
$a\sqcap b\sqsubset b$ that is $a'\sqsubset b$ where $a'=a\sqcap b$.
Consequently $\exists c\in\mathfrak{A}\setminus\{\bot\}:(c\asymp a'\land c\sqsubseteq b)$.
We have $c\sqcap a=c\sqcap b\sqcap a=c\sqcap a'=\bot$. So $c\sqsubseteq b$
and $c\sqcap a=\bot$. Thus Wallman's disjunction property holds.
\end{description}
\end{proof}
\begin{prop}\label{bool-sep}
Every boolean lattice is strongly separable.\end{prop}
\begin{proof}
Let $a,b\in\mathfrak{A}$ where $\mathfrak{A}$ is a boolean lattice
an $a\neq b$. Then $a\sqcap\bar{b}\neq\bot$ or $\bar{a}\sqcap b\neq\bot$
because otherwise $a\sqcap\bar{b}=\bot$ and $a\sqcup\bar{b}=\top$
and thus $a=b$. Without loss of generality assume $a\sqcap\bar{b}\neq\bot$.
Then $a\sqcap c\neq\bot$ and $b\sqcap c=\bot$ for $c=a\sqcap\bar{b}\neq\bot$,
that is our lattice is separable.
It is strongly separable by theorem~\ref{msl-sep-conds}.
\end{proof}
\subsection{\label{atm-sep}Atomically Separable Lattices}
\begin{prop}
``$\atoms$'' is a straight monotone map (for any meet-semilattice).\end{prop}
\begin{proof}
Monotonicity is obvious. The rest follows from the formula
\[
\atoms(a\sqcap b)=\atoms a\cap\atoms b
\]
(corollary \ref{atoms-meet}).\end{proof}
\begin{defn}
\index{separable!atomically}I will call \emph{atomically separable}
such a poset that ``$\atoms$'' is an injection.\end{defn}
\begin{prop}
$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow\atoms a\subset\atoms b)$
iff $\mathfrak{A}$ is atomically separable for a poset $\mathfrak{A}$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Leftarrow$}] Obvious.
\item [{$\Rightarrow$}] Let $a\neq b$ for example $a\nsqsubseteq b$.
Then $a\sqcap b\sqsubset a$; $\atoms a\supset\atoms(a\sqcap b)=\atoms a\cap\atoms b$
and thus $\atoms a\neq\atoms b$.
\end{description}
\end{proof}
\begin{prop}
\label{atms-is-asep}Any atomistic poset is atomically separable.\end{prop}
\begin{proof}
We need to prove that $\atoms a=\atoms b\Rightarrow a=b$. But it
is obvious because
\[
a=\bigsqcup\atoms a\quad\text{and}\quad b=\bigsqcup\atoms b.
\]
\end{proof}
\begin{thm}
\label{amstc-sep}A complete lattice is atomistic iff it is atomically
separable.\end{thm}
\begin{proof}
Direct implication is the above proposition. Let's prove the reverse
implication.
Let ``$\atoms$'' be injective. Consider an element $a$ of our
poset. Let $b=\bigsqcup\atoms a$. Obviously $b\sqsubseteq a$ and
thus $\atoms b\subseteq\atoms a$. But if $x\in\atoms a$ then $x\sqsubseteq b$
and thus $x\in\atoms b$. So $\atoms a=\atoms b$. By injectivity
$a=b$ that is $a=\bigsqcup\atoms a$.\end{proof}
\begin{thm}
\label{atomistic-enough}If a lattice with least element is atomic
and separable then it is atomistic.\end{thm}
\begin{proof}
Suppose the contrary that is $a\sqsupset\bigsqcup\atoms a$. Then,
because our lattice is separable, there exists $c\in\mathfrak{A}$
such that $c\sqcap a\neq\bot$ and $c\sqcap\bigsqcup\atoms a=\bot$.
There exists atom $d\sqsubseteq c$ such that $d\sqsubseteq c\sqcap a$.
$d\sqcap\bigsqcup\atoms a\sqsubseteq c\sqcap\bigsqcup\atoms a=\bot$.
But $d\in\atoms a$. Contradiction.\end{proof}
\begin{thm}
\label{sep-conds}Let $\mathfrak{A}$ be an atomic meet-semilattice
with least element. Then the following statements are equivalent:
\begin{enumerate}
\item \label{sc-sep}$\mathfrak{A}$ is separable.
\item \label{sc-stsep}$\mathfrak{A}$ is strongly separable.
\item \label{sc-at-sep}$\mathfrak{A}$ is atomically separable.
\item \label{sc-wall}$\mathfrak{A}$ conforms to Wallman's disjunction
property.
\item \label{sc-other}$\forall a,b\in\mathfrak{A}:(a\sqsubset b\Rightarrow\exists c\in\mathfrak{A}\setminus\{\bot\}:(c\asymp a\land c\sqsubseteq b))$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{sc-sep}$\Leftrightarrow$\ref{sc-stsep}$\Leftrightarrow$\ref{sc-wall}$\Leftrightarrow$\ref{sc-other}}] Proved
above.
\item [{\ref{sc-at-sep}$\Rightarrow$\ref{sc-other}}] Let our semilattice
be atomically separable. Let $a\sqsubset b$. Then $\atoms a\subset\atoms b$
and there exists $c\in\atoms b$ such that $c\notin\atoms a$. $c\neq\bot$
and $c\sqsubseteq b$, from which (taking into account that $c$ is
an atom) $c\sqsubseteq b$ and $c\sqcap a=\bot$. So our semilattice
conforms to the formula~\ref{sc-other}.
\item [{\ref{sc-other}$\Rightarrow$\ref{sc-at-sep}}] Let formula~\ref{sc-other}
hold. Then for any elements $a\sqsubset b$ there exists $c\neq\bot$
such that $c\sqsubseteq b$ and $c\sqcap a=\bot$. Because $\mathfrak{A}$
is atomic there exists atom $d\sqsubseteq c$. $d\in\atoms b$ and
$d\notin\atoms a$. So $\atoms a\neq\atoms b$ and $\atoms a\subseteq\atoms b$.
Consequently $\atoms a\subset\atoms b$.
\end{description}
\end{proof}
\begin{thm}
\label{atom-is-sep}Any atomistic poset is strongly separable.\end{thm}
\begin{proof}
$\star x \sqsubseteq \star y \Rightarrow \atoms x \sqsubseteq
\atoms y \Rightarrow x \sqsubseteq y$ because $\atoms x = \star x
\cap \atoms^{\mathfrak{A}}$.
\end{proof}
\section{Quasidifference and Quasicomplement}
I've got quasidifference and quasicomplement (and dual quasicomplement)
replacing $\max$ and $\min$ in the definition of pseudodifference
and pseudocomplement (and dual pseudocomplement) with $\bigsqcup$
and $\bigsqcap$. Thus quasidifference and (dual) quasicomplement
are generalizations of their pseudo- counterparts.
\begin{rem}
\emph{Pseudocomplements} and \emph{pseudodifferences} are standard
terminology. \emph{Quasi-} counterparts are my neologisms.\end{rem}
\begin{defn}
\index{quasicomplement}Let $\mathfrak{A}$ be a poset, $a\in\mathfrak{A}$.
\emph{Quasicomplement} of $a$ is
\[
a^{\ast}=\bigsqcup\setcond{c\in\mathfrak{A}}{c\asymp a}.
\]
\end{defn}
\begin{defn}
\index{quasicomplement!dual}Let $\mathfrak{A}$ be a poset, $a\in\mathfrak{A}$.
\emph{Dual quasicomplement} of $a$ is
\[
a^{+}=\bigsqcap\setcond{c\in\mathfrak{A}}{c\equiv a}.
\]
\end{defn}
I will denote quasicomplement and dual quasicomplement for a specific
poset~$\mathfrak{A}$ as $a^{\ast(\mathfrak{A)}}$ and $a^{+(\mathfrak{A)}}$.
\begin{defn}
\index{quasidifference}Let $a,b\in\mathfrak{A}$ where $\mathfrak{A}$
is a distributive lattice. \emph{Quasidifference} of $a$ and $b$
is
\[
a\psetminus b=\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqsubseteq b\sqcup z}.
\]
\end{defn}
\begin{defn}
\index{quasidifference}Let $a,b\in\mathfrak{A}$ where $\mathfrak{A}$
is a distributive lattice. \emph{Second quasidifference} of $a$ and
$b$ is
\[
a\mathop\#b=\bigsqcup\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\asymp b}.
\]
\end{defn}
\begin{thm}
$a\psetminus b=\bigsqcap\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land a\sqsubseteq b\sqcup z}$
where $\mathfrak{A}$ is a distributive lattice and $a,b\in\mathfrak{A}$.\end{thm}
\begin{proof}
Obviously $\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land a\sqsubseteq b\sqcup z}\subseteq\setcond{z\in\mathfrak{A}}{a\sqsubseteq b\sqcup z}$.
Thus $\bigsqcap\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land a\sqsubseteq b\sqcup z}\sqsupseteq a\psetminus b$.
Let $z\in\mathfrak{A}$ and $z'=z\sqcap a$.
$a\sqsubseteq b\sqcup z\Rightarrow a\sqsubseteq(b\sqcup z)\sqcap a\Leftrightarrow a\sqsubseteq(b\sqcap a)\sqcup(z\sqcap a)\Leftrightarrow a\sqsubseteq(b\sqcap a)\sqcup z'\Rightarrow a\sqsubseteq b\sqcup z'$
and $a\sqsubseteq b\sqcup z\Leftarrow a\sqsubseteq b\sqcup z'$. Thus
$a\sqsubseteq b\sqcup z\Leftrightarrow a\sqsubseteq b\sqcup z'$.
If $z\in\setcond{z\in\mathfrak{A}}{a\sqsubseteq b\sqcup z}$ then
$a\sqsubseteq b\sqcup z$ and thus
\[
z'\in\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land a\sqsubseteq b\sqcup z}.
\]
But $z'\sqsubseteq z$ thus having $\bigsqcap\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land a\sqsubseteq b\sqcup z}\sqsubseteq\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqsubseteq b\sqcup z}$.\end{proof}
\begin{rem}
If we drop the requirement that $\mathfrak{A}$ is distributive, two
formulas for quasidifference (the definition and the last theorem)
fork.\end{rem}
\begin{obvious}
Dual quasicomplement is the dual of quasicomplement.
\end{obvious}
\begin{obvious}
~
\begin{itemize}
\item Every pseudocomplement is quasicomplement.
\item Every dual pseudocomplement is dual quasicomplement.
\item Every pseudodifference is quasidifference.
\end{itemize}
\end{obvious}
Below we will stick to the more general quasies than pseudos. If needed,
one can check that a quasicomplement $a^{\ast}$ is a pseudocomplement
by the equation $a^{\ast}\asymp a$ (and analogously with other quasies).
Next we will express quasidifference through quasicomplement.
\begin{prop}
~
\begin{enumerate}
\item \label{minus-meet}$a\psetminus b=a\psetminus(a\sqcap b)$ for any
distributive lattice;
\item \label{minus-meet2}$a\mathop\#b=a\mathop\#(a\sqcap b)$ for any distributive
lattice with least element.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{minus-meet}}] $a\sqsubseteq(a\sqcap b)\sqcup z\Leftrightarrow a\sqsubseteq(a\sqcup z)\sqcap(b\sqcup z)\Leftrightarrow a\sqsubseteq a\sqcup z\land a\sqsubseteq b\sqcup z\Leftrightarrow a\sqsubseteq b\sqcup z$.
Thus $a\psetminus(a\sqcap b)=\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqsubseteq(a\sqcap b)\sqcup z}=\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqsubseteq b\sqcup z}=a\psetminus b$.
\item [{\ref{minus-meet2}}] ~
\begin{align*}
a\mathop\#(a\sqcap b) & =\\
\bigsqcup\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap a\sqcap b=\bot} & =\\
\bigsqcup\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land(z\sqcap a)\sqcap a\sqcap b=\bot} & =\\
\bigsqcup\setcond{z\sqcap a}{z\in\mathfrak{A},z\sqcap a\sqcap b=\bot} & =\\
\bigsqcup\setcond{z\in\mathfrak{A}}{z\sqsubseteq a,z\sqcap b=\bot} & =\\
a\mathop\#b.
\end{align*}
\end{widedisorder}
\end{proof}
I will denote $Da$ the lattice $\setcond{x\in\mathfrak{A}}{x\sqsubseteq a}$.
\begin{thm}
For $a,b\in\mathfrak{A}$ where $\mathfrak{A}$ is a distributive
lattice
\begin{enumerate}
\item \label{pdiff-comp}$a\psetminus b=(a\sqcap b)^{+(Da)}$;
\item \label{sec-pdiff-comp}$a\mathop\#b=(a\sqcap b)^{\ast(Da)}$ if $\mathfrak{A}$
has least element.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{disorder}
\item [{\ref{pdiff-comp}}] ~
\begin{align*}
(a\sqcap b)^{+(Da)} & =\\
\bigsqcap\setcond{c\in Da}{c\sqcup(a\sqcap b)=a} & =\\
\bigsqcap\setcond{c\in Da}{c\sqcup(a\sqcap b)\sqsupseteq a} & =\\
\bigsqcap\setcond{c\in Da}{(c\sqcup a)\sqcap(c\sqcup b)\sqsupseteq a} & =\\
\bigsqcap\setcond{c\in\mathfrak{A}}{c\sqsubseteq a\land c\sqcup b\sqsupseteq a} & =\\
a\psetminus b.
\end{align*}
\item [{\ref{sec-pdiff-comp}}] ~
\begin{align*}
(a\sqcap b)^{\ast(Da)} & =\\
\bigsqcup\setcond{c\in Da}{c\sqcap a\sqcap b=\bot} & =\\
\bigsqcup\setcond{c\in\mathfrak{A}}{c\sqsubseteq a\land c\sqcap a\sqcap b=\bot} & =\\
\bigsqcup\setcond{c\in\mathfrak{A}}{c\sqsubseteq a\land c\sqcap b=\bot} & =\\
a\mathop\#b.
\end{align*}
\end{disorder}
\end{proof}
\begin{prop}
$(a\sqcup b)\psetminus b\sqsubseteq a$ for an arbitrary complete
lattice.\end{prop}
\begin{proof}
$(a\sqcup b)\psetminus b=\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqcup b\sqsubseteq b\sqcup z}$.
But $a\sqsubseteq z\Rightarrow a\sqcup b\sqsubseteq b\sqcup z$. So
$\setcond{z\in\mathfrak{A}}{a\sqcup b\sqsubseteq b\sqcup z}\supseteq\setcond{z\in\mathfrak{A}}{a\sqsubseteq z}$.
Consequently, $(a\sqcup b)\psetminus b\sqsubseteq\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqsubseteq z}=a$.
\end{proof}
\section{Several equal ways to express pseudodifference}
\begin{thm}
\label{pdiff-eq1}For an atomistic co-brouwerian lattice $\mathfrak{A}$
and $a,b\in\mathfrak{A}$ the following expressions are always equal:
\begin{enumerate}
\item \label{pdiff-pdiff}$a\psetminus b=\bigsqcap\setcond{z\in\mathfrak{A}}{a\sqsubseteq b\sqcup z}$
(quasidifference of $a$ and $b$);
\item \label{pdiff-sec}$a\mathop\#b=\bigsqcup\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap b=\bot}$
(second quasidifference of $a$ and $b$);
\item \label{pdiff-atm}$\bigsqcup(\atoms a\setminus\atoms b)$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{Proof~of~\ref{pdiff-pdiff}=\ref{pdiff-atm}}]
\begin{align*}
a\psetminus b & =\\
\left(\bigsqcup\atoms a\right)\psetminus b & =\text{ (theorem \ref{cup-pdiff})}\\
\bigsqcup_{A\in\atoms a}(A\psetminus b) & =\\
\bigsqcup_{A\in\atoms a}\left(\begin{cases}
A & \text{if }A\notin\atoms b\\
\bot & \text{if }A\in\atoms b
\end{cases}\right) & =\\
\bigsqcup\setcond A{A\in\atoms a,A\notin\atoms b} & =\\
\bigsqcup(\atoms a\setminus\atoms b).
\end{align*}
\item [{Proof~of~\ref{pdiff-sec}=\ref{pdiff-atm}}] $a\psetminus b$
is defined because our lattice is co-brouwerian. Taking the above
into account, we have
\begin{align*}
a\psetminus b & =\\
\bigsqcup(\atoms a\setminus\atoms b) & =\\
\bigsqcup\setcond{z\in\atoms a}{z\sqcap b=\bot}.
\end{align*}
So $\bigsqcup\setcond{z\in\atoms a}{z\sqcap b=\bot}$ is defined.
If $z\sqsubseteq a\land z\sqcap b=\bot$ then $z'=\bigsqcup\setcond{x\in\atoms z}{x\sqcap b=\bot}$
is defined because $z'=z\psetminus b$ (atomisticity taken into account).
$z'$ is a lower bound for $\setcond{z\in\atoms a}{x\sqcap b=\bot}$.
Thus $z'\in\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap b=\bot}$
and so $\bigsqcup\setcond{z\in\atoms a}{z\sqcap b=\bot}$ is an upper
bound of $\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap b=\bot}$.
If $y$ is above every $z'\in\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap b=\bot}$
then $y$ is above every $z\in\atoms a$ such that $z\sqcap b=\bot$
and thus $y$ is above $\bigsqcup\setcond{z\in\atoms a}{z\sqcap b=\bot}$.
Thus $\bigsqcup\setcond{z\in\atoms a}{z\sqcap b=\bot}$ is least upper
bound of
\[
\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap b=\bot},
\]
that is
\begin{align*}
\bigsqcup\setcond{z\in\mathfrak{A}}{z\sqsubseteq a\land z\sqcap b=\bot} & =\\
\bigsqcup\setcond{z\in\atoms a}{z\sqcap b=\bot} & =\\
\bigsqcup(\atoms a\setminus\atoms b).
\end{align*}
\end{description}
\end{proof}
\section{Partially ordered categories}
\subsection{Definition}
\begin{defn}
\index{category!partially ordered}\index{precategory!partially ordered}I
will call a partially ordered (pre)category a (pre)category together
with partial order $\sqsubseteq$ on each of its Mor-sets with the
additional requirement that
\[
f_{1}\sqsubseteq f_{2}\land g_{1}\sqsubseteq g_{2}\Rightarrow g_{1}\circ f_{1}\sqsubseteq g_{2}\circ f_{2}
\]
for every morphisms $f_{1}$, $g_{1}$, $f_{2}$, $g_{2}$ such that
$\Src f_{1}=\Src f_{2}$ and $\Dst f_{1}=\Dst f_{2}=\Src g_{1}=\Src g_{2}$
and $\Dst g_{1}=\Dst g_{2}$.
\end{defn}
I will denote lattice operations on a $\Hom$-set $C(A,B)$ of a category
(or any directed multigraph) like $\sqcup^{C}$ instead of writing
$\sqcup^{C(A,B)}$ explicitly.
\subsection{Dagger categories}
\begin{defn}
\index{precategory!dagger}I will call a \emph{dagger precategory}
a precategory together with an involutive contravariant identity-on-objects
prefunctor $x\mapsto x^{\dagger}$.
In other words, a dagger precategory is a precategory equipped with
a function $x\mapsto x^{\dagger}$ on its set of morphisms which reverses
the source and the destination and is subject to the following identities
for every morphisms $f$ and~$g$:
\begin{enumerate}
\item $f^{\dagger\dagger}=f$;
\item $(g\circ f)^{\dagger}=f^{\dagger}\circ g^{\dagger}$.
\end{enumerate}
\end{defn}
\begin{defn}
\index{category!dagger}I will call a \emph{dagger category} a category
together with an involutive contravariant identity-on-objects functor
$x\mapsto x^{\dagger}$.
In other words, a dagger category is a category equipped with a function
$x\mapsto x^{\dagger}$ on its set of morphisms which reverses the
source and the destination and is subject to the following identities
for every morphisms $f$ and $g$ and object~$A$:
\begin{enumerate}
\item $f^{\dagger\dagger}=f$;
\item $(g\circ f)^{\dagger}=f^{\dagger}\circ g^{\dagger}$;
\item $(1_{A})^{\dagger}=1_{A}$.
\end{enumerate}
\end{defn}
\begin{thm}
If a category is a dagger precategory then it is a dagger category.\end{thm}
\begin{proof}
We need to prove only that $(1_{A})^{\dagger}=1_{A}$. Really,
\[
(1_{A})^{\dagger}=(1_{A})^{\dagger}\circ1_{A}=(1_{A})^{\dagger}\circ(1_{A})^{\dagger\dagger}=((1_{A})^{\dagger}\circ1_{A})^{\dagger}=(1_{A})^{\dagger\dagger}=1_{A}.
\]
\end{proof}
For a partially ordered dagger (pre)category I will additionally require
(for every morphisms $f$ and $g$ with the same source and destination)
\[
f^{\dagger}\sqsubseteq g^{\dagger}\Leftrightarrow f\sqsubseteq g.
\]
An example of dagger category is the category $\mathbf{Rel}$ whose
objects are sets and whose morphisms are binary relations between
these sets with usual composition of binary relations and with $f^{\dagger}=f^{-1}$.
\begin{defn}
\index{morphism!unitary}A morphism $f$ of a dagger category is called
\emph{unitary} when it is an isomorphism and $f^{\dagger}=f^{-1}$.
\end{defn}
\begin{defn}
\index{morphism!symmetric}\emph{Symmetric} (endo)morphism of a dagger
precategory is such a morphism $f$ that $f=f^{\dagger}$.
\end{defn}
\begin{defn}
\index{morphism!transitive}\emph{Transitive} (endo)morphism of a
precategory is such a morphism $f$ that $f=f\circ f$.\end{defn}
\begin{thm}
\label{sym-trans}The following conditions are equivalent for a morphism
$f$ of a dagger precategory:
\begin{enumerate}
\item \label{sym-trans-both}$f$ is symmetric and transitive.
\item \label{f-df-f}$f=f^{\dagger}\circ f$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{\ref{sym-trans-both}$\Rightarrow$\ref{f-df-f}}] If $f$ is symmetric
and transitive then $f^{\dagger}\circ f=f\circ f=f$.
\item [{\ref{f-df-f}$\Rightarrow$\ref{sym-trans-both}}] $f^{\dagger}=(f^{\dagger}\circ f)^{\dagger}=f^{\dagger}\circ f^{\dagger\dagger}=f^{\dagger}\circ f=f$,
so $f$ is symmetric. $f=f^{\dagger}\circ f=f\circ f$, so $f$ is
transitive.
\end{description}
\end{proof}
\subsubsection{Some special classes of morphisms}
\begin{defn}
\index{morphism!monovalued}For a partially ordered dagger category
I will call \emph{monovalued} morphism such a morphism $f$ that $f\circ f^{\dagger}\sqsubseteq1_{\Dst f}$.
\end{defn}
\begin{defn}
\index{morphism!entirely defined}For a partially ordered dagger category
I will call \emph{entirely defined} morphism such a morphism $f$
that $f^{\dagger}\circ f\sqsupseteq1_{\Src f}$.
\end{defn}
\begin{defn}
\index{morphism!injective}For a partially ordered dagger category
I will call \emph{injective} morphism such a morphism $f$ that $f^{\dagger}\circ f\sqsubseteq1_{\Src f}$.
\end{defn}
\begin{defn}
\index{morphism!surjective}For a partially ordered dagger category
I will call \emph{surjective} morphism such a morphism f that $f\circ f^{\dagger}\sqsupseteq1_{\Dst f}$.\end{defn}
\begin{rem}
It is easy to show that this is a generalization of monovalued, entirely
defined, injective, and surjective functions as morphisms of the category
$\mathbf{Rel}$.\end{rem}
\begin{obvious}
``Injective morphism'' is a dual of ``monovalued morphism'' and
``surjective morphism'' is a dual of ``entirely defined morphism''.\end{obvious}
\begin{defn}
For a given partially ordered dagger category $C$ the \emph{category
of monovalued} (\emph{entirely defined}, \emph{injective}, \emph{surjective})
morphisms of $C$ is the category with the same set of objects as
of $C$ and the set of morphisms being the set of monovalued (entirely
defined, injective, surjective) morphisms of $C$ with the composition
of morphisms the same as in $C$.
\end{defn}
We need to prove that these are really categories, that is that composition
of monovalued (entirely defined, injective, surjective) morphisms
is monovalued (entirely defined, injective, surjective) and that identity
morphisms are monovalued, entirely defined, injective, and surjective.
\begin{proof}
We will prove only for monovalued morphisms and entirely defined morphisms,
as injective and surjective morphisms are their duals.
\begin{description}
\item [{Monovalued}] Let $f$ and $g$ be monovalued morphisms, $\Dst f=\Src g$.
Then
\begin{align*}
(g\circ f)\circ(g\circ f)^{\dagger} & =\\
g\circ f\circ f^{\dagger}\circ g^{\dagger} & \sqsubseteq\\
g\circ1_{\Src g}\circ g^{\dagger} & =\\
g\circ g^{\dagger} & \sqsubseteq\\
1_{\Dst g}&=1_{\Dst(g\circ f)}.
\end{align*}
So $g\circ f$ is monovalued.
That identity morphisms are monovalued follows from the following:
\[
1_{A}\circ(1_{A})^{\dagger}=1_{A}\circ1_{A}=1_{A}=1_{\Dst1_{A}}\sqsubseteq1_{\Dst1_{A}}.
\]
\item [{Entirely~defined}] Let $f$ and $g$ be entirely defined morphisms,
$\Dst f=\Src g$. Then
\begin{align*}
(g\circ f)^{\dagger}\circ(g\circ f) & =\\
f^{\dagger}\circ g^{\dagger}\circ g\circ f & \sqsupseteq\\
f^{\dagger}\circ1_{\Src g}\circ f & =\\
f^{\dagger}\circ1_{\Dst f}\circ f & =\\
f^{\dagger}\circ f & \sqsupseteq\\
1_{\Src f}&=1_{\Src(g\circ f)}.
\end{align*}
So $g\circ f$ is entirely defined.
That identity morphisms are entirely defined follows from the following:
\[
(1_{A})^{\dagger}\circ1_{A}=1_{A}\circ1_{A}=1_{A}=1_{\Src1_{A}}\sqsupseteq1_{\Src1_{A}}.
\]
\end{description}
\end{proof}
\begin{defn}
\index{morphism!bijective}I will call a \emph{bijective} morphism
a morphism which is entirely defined, monovalued, injective, and surjective.\end{defn}
\begin{prop}
If a morphism is bijective then it is an isomorphism.\end{prop}
\begin{proof}
Let $f$ be bijective. Then $f\circ f^{\dagger}\sqsubseteq1_{\Dst f}$,
$f^{\dagger}\circ f\sqsupseteq1_{\Src f}$, $f^{\dagger}\circ f\sqsubseteq1_{\Src f}$,
$f\circ f^{\dagger}\sqsupseteq1_{\Dst f}$. Thus $f\circ f^{\dagger}=1_{\Dst f}$
and $f^{\dagger}\circ f=1_{\Src f}$ that is $f^{\dagger}$ is an
inverse of $f$.
\end{proof}
Let $\Hom$-sets be complete lattices.
\begin{defn}
\index{morphism!metamonovalued}A morphism $f$ of a partially ordered
category is \emph{metamonovalued} when $\left(\bigsqcap G\right)\circ f=\bigsqcap_{g\in G}(g\circ f)$
whenever $G$ is a set of morphisms with a suitable source and destination.
\end{defn}
\begin{defn}
\index{morphism!metainjective}A morphism $f$ of a partially ordered
category is \emph{metainjective} when $f\circ\left(\bigsqcap G\right)=\bigsqcap_{g\in G}(f\circ g)$
whenever $G$ is a set of morphisms with a suitable source and destination.\end{defn}
\begin{obvious}
Metamonovaluedness and metainjectivity are dual to each other.\end{obvious}
\begin{defn}
\index{morphism!metacomplete}A morphism $f$ of a partially ordered
category is \emph{metacomplete} when $f\circ\left(\bigsqcup G\right)=\bigsqcup_{g\in G}(f\circ g)$
whenever $G$ is a set of morphisms with a suitable source and destination.
\end{defn}
\begin{defn}
\index{morphism!co-metacomplete}A morphism $f$ of a partially ordered
category is \emph{co-metacomplete} when $\left(\bigsqcup G\right)\circ f=\bigsqcup_{g\in G}(g\circ f)$
whenever $G$ is a set of morphisms with a suitable source and destination.
\end{defn}
Let now $\Hom$-sets be meet-semilattices.
\begin{defn}
\index{morphism!weakly metamonovalued}A morphism $f$ of a partially
ordered category is \emph{weakly metamonovalued} when $(g\sqcap h)\circ f=(g\circ f)\sqcap(h\circ f)$
whenever $g$ and $h$ are morphisms with a suitable source and destination.
\end{defn}
\begin{defn}
\index{morphism!weakly metainjective}A morphism $f$ of a partially
ordered category is \emph{weakly metainjective} when $f\circ(g\sqcap h)=(f\circ g)\sqcap(f\circ h)$
whenever $g$ and $h$ are morphisms with a suitable source and destination.
\end{defn}
Let now $\Hom$-sets be join-semilattices.
\begin{defn}
\index{morphism!weakly metacomplete}A morphism $f$ of a partially
ordered category is \emph{weakly metacomplete} when $f\circ(g\sqcup h)=(f\circ g)\sqcup(f\circ h)$
whenever $g$ and $h$ are morphisms with a suitable source and destination.
\end{defn}
\begin{defn}
\index{morphism!weakly co-metacomplete}A morphism $f$ of a partially
ordered category is \emph{weakly co-metacomplete} when $(g\sqcup h)\circ f=(g\circ f)\sqcup(h\circ f)$
whenever $g$ and $h$ are morphisms with a suitable source and destination.\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item Metamonovalued morphisms are weakly metamonovalued.
\item Metainjective morphisms are weakly metainjective.
\item Metacomplete morphisms are weakly metacomplete.
\item Co-metacomplete morphisms are weakly co-metacomplete.
\end{enumerate}
\end{obvious}
\section{Partitioning}
\begin{defn}
\index{torning}Let $\mathfrak{A}$ be a complete lattice. \emph{Torning}
of an element $a\in\mathfrak{A}$ is a set $S\in\subsets\mathfrak{A}\setminus\{\bot\}$
such that
\[
\bigsqcup S=a\quad\text{and}\quad\forall x,y\in S:(x\neq y\Rightarrow x\asymp y).
\]
\end{defn}
\begin{defn}
\index{partition!weak}Let $\mathfrak{A}$ be a complete lattice.
\emph{Weak partition} of an element $a\in\mathfrak{A}$ is a set $S\in\subsets\mathfrak{A}\setminus\{\bot\}$
such that
\[
\bigsqcup S=a\quad\text{and}\quad\forall x\in S:x\asymp\bigsqcup(S\setminus\{x\}).
\]
\end{defn}
\begin{defn}
\index{partition!strong}Let $\mathfrak{A}$ be a complete lattice.
\emph{Strong partition} of an element $a\in\mathfrak{A}$ is a set
$S\in\subsets\mathfrak{A}\setminus\{\bot\}$ such that
\[
\bigsqcup S=a\quad\text{and}\quad\forall A,B\in\subsets S:(A\asymp B\Rightarrow\bigsqcup A\asymp\bigsqcup B).
\]
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item Every strong partition is a weak partition.
\item Every weak partition is a torning.
\end{enumerate}
\end{obvious}
\begin{defn}
\emph{Complete lattice generated by} a set~$P$ (on a complete lattice)
is the set (obviously having the structure of complete lattice)
$P_0\cup P_1\cup\dots$
where $P_0=P$ and
$P_{i+1}=\setcond{\bigsqcup K, \bigsqcap K}{K\in\subsets P_i}$.
\end{defn}
\begin{obvious}
Complete lattice generated by a set is indeed a complete lattice.
\end{obvious}
\begin{example}
$[S] \ne \setcond{\bigsqcup^{\mathfrak{A}}X}{X\in\subsets S}$, where~$[S]$ is the complete lattice generated by
a strong partition~$S$ of a filter on a set.
\end{example}
\begin{proof}
Consider any infinite set~$U$ and its strong partition~$S=\setcond{\uparrow^U\{x\}}{x\in U}$.
The set~$S$ consists only of principal filters. But~$[S]$ contains (exercise!) some
nonprincipal filters.
\end{proof}
By the way:
\begin{prop}
$\setcond{\bigsqcup^{\mathfrak{A}}X}{X\in\subsets S}$ is closed under
binary meets, if~$S$ is a strong partition of an element of a complete lattice.\end{prop}
\begin{proof}
Let $R=\setcond{\bigsqcup^{\mathfrak{A}}X}{X\in\subsets S}$. Then
for every $X,Y\in\subsets S$
\begin{align*}
\bigsqcup^{\mathfrak{A}}X\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y & =\\
\bigsqcup^{\mathfrak{A}}((X\cap Y)\cup(X\setminus Y))\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y & =\\
\left(\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcup^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}(X\setminus Y)\right)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y & =\\
\left(\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y\right)\sqcup^{\mathfrak{A}}\left(\bigsqcup^{\mathfrak{A}}(X\setminus Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y\right) & =\\
\left(\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y\right)\sqcup^{\mathfrak{A}}\bot^{\mathfrak{A}} & =\\
\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y.
\end{align*}
Applying the formula $\bigsqcup^{\mathfrak{A}}X\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y=\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y$
twice we get
\begin{align*}
\bigsqcup^{\mathfrak{A}}X\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}Y & =\\
\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}(Y\cap(X\cap Y)) & =\\
\bigsqcup^{\mathfrak{A}}(X\cap Y)\sqcap^{\mathfrak{A}}\bigsqcup^{\mathfrak{A}}(X\cap Y) & =\\
\bigsqcup^{\mathfrak{A}}(X\cap Y).
\end{align*}
But for any $A,B\in R$ there exist $X,Y\in\subsets S$ such that
$A=\bigsqcup^{\mathfrak{A}}X$, $B=\bigsqcup^{\mathfrak{A}}Y$. So
$A\sqcap^{\mathfrak{A}}B=\bigsqcup^{\mathfrak{A}}X\sqcap\bigsqcup^{\mathfrak{A}}Y=\bigsqcup^{\mathfrak{A}}(X\cap Y)\in R$.
\end{proof}
\section{A proposition about binary relations}
\begin{prop}
\label{rel-cross}Let $f$, $g$, $h$ be binary relations. Then $g\circ f\nasymp h\Leftrightarrow g\nasymp h\circ f^{-1}$.\end{prop}
\begin{proof}
~
\begin{align*}
g\circ f\nasymp h & \Leftrightarrow\\
\exists a,c:a\mathrel{((g\circ f)\cap h)}c & \Leftrightarrow\\
\exists a,c:(a\mathrel{(g\circ f)}c\land a\mathrel{h}c) & \Leftrightarrow\\
\exists a,b,c:(a\mathrel{f}b\land b\mathrel{g}c\land a\mathrel{h}c) & \Leftrightarrow\\
\exists b,c:(b\mathrel{g}c\land b\mathrel{(h\circ f^{-1})}c) & \Leftrightarrow\\
\exists b,c:b\mathrel{(g\cap(h\circ f^{-1}))}c & \Leftrightarrow\\
g\nasymp h\circ f^{-1}.
\end{align*}
\end{proof}
\section{Infinite associativity and ordinated product}
\subsection{Introduction}
We will consider some function $f$ which takes an arbitrary ordinal
number of arguments. That is $f$ can be taken for arbitrary (small,
if to be precise) ordinal number of arguments. More formally: Let
$x=x_{i\in n}$ be a family indexed by an ordinal $n$. Then $f(x)$
can be taken. The same function $f$ can take different number of
arguments. (See below for the exact definition.)
Some of such functions $f$ are associative in the sense defined below.
If a function is associative in the below defined sense, then the
binary operation induced by this function is associative in the usual
meaning of the word ``associativity'' as defined in basic algebra.
I also introduce and research an important example of infinitely associative
function, which I call \emph{ordinated product}.
Note that my searching about infinite associativity and ordinals in
Internet has provided no useful results. As such there is a reason
to assume that my research of generalized associativity in terms of
ordinals is novel.
\subsection{Used notation}
\index{ordinal}We identify natural numbers with finite Von Neumann's
ordinals (further just \emph{ordinals} or \emph{ordinal numbers}).
For simplicity we will deal with small sets (members of a Grothendieck
universe). We will denote the Grothendieck universe (aka \emph{universal
set}) as $\mho$.
I will denote a tuple of $n$ elements like $\left\llbracket a_{0},\ldots,a_{n-1}\right\rrbracket $.
By definition
\[
\left\llbracket a_{0},\ldots,a_{n-1}\right\rrbracket =\{(0,a_{0}),\ldots,(n-1,a_{n-1})\}.
\]
Note that an ordered pair $(a,b)$ is not the same as the tuple $\left\llbracket a,b\right\rrbracket $
of two elements. (However, we will use them interchangeably.)
\begin{defn}
\index{relation!anchored}An \emph{anchored relation} is a tuple $\left\llbracket n,r\right\rrbracket $
where $n$ is an index set and $r$ is an $n$-ary relation.
\end{defn}
\index{graph!of anchored relation}For an anchored relation $\arity\left\llbracket n,r\right\rrbracket =n$.
The graph\footnote{It is unrelated with graph theory.} of $\left\llbracket n,r\right\rrbracket $
is defined as follows: $\GR\left\llbracket n,r\right\rrbracket =r$.
\begin{defn}
$\Pr_{i}f$ is a function defined by the formula
\[
\Pr_{i}f=\setcond{x_{i}}{x\in f}
\]
for every small $n$-ary relation $f$ where $n$ is an ordinal number
and $i\in n$. Particularly for every $n$-ary relation $f$ and $i\in n$
where $n\in\mathbb{N}$
\[
\Pr_{i}f=\setcond{x_{i}}{\left\llbracket x_{0},\ldots,x_{n-1}\right\rrbracket \in f}.
\]
\end{defn}
\index{product!cartesian}Recall that Cartesian product is defined
as follows:
\[
\prod a=\setcond{z\in\left(\bigcup\im a\right)^{\dom a}}{\forall i\in\dom a:z(i)\in a_{i}}.
\]
\begin{obvious}
If $a$ is a small function, then $\prod a=\setcond{z\in\mho^{\dom a}}{\forall i\in\dom a:z(i)\in a_{i}}.$
\end{obvious}
\subsubsection{Currying and uncurrying}
\paragraph{The customary definition}
Let $X$, $Y$, $Z$ be sets.
We will consider variables $x\in X$ and $y\in Y$.
\index{currying}Let a function $f\in Z^{X\times Y}$. Then $\curry(f)\in(Z^{Y})^{X}$
is the function defined by the formula $(\curry(f)x)y=f(x,y)$.
\index{uncurrying}Let now $f\in(Z^{Y})^{X}$. Then $\uncurry(f)\in Z^{X\times Y}$
is the function defined by the formula $\uncurry(f)(x,y)=(fx)y$.
\begin{obvious}
~
\begin{enumerate}
\item $\uncurry(\curry(f))=f$ for every $f\in Z^{X\times Y}$.
\item $\curry(\uncurry(f))=f$ for every $f\in(Z^{Y})^{X}$.
\end{enumerate}
\end{obvious}
\paragraph{Currying and uncurrying with a dependent variable}
Let $X$, $Z$ be sets and $Y$ be a function with the domain $X$.
(Vaguely saying, $Y$ is a variable dependent on $X$.)
The disjoint union $\coprod Y=\bigcup_{i\in\dom Y}(\{i\}\times Y_{i})=\setcond{(i,x)}{i\in\dom Y,x\in Y_{i}}$.
We will consider variables $x\in X$ and $y\in Y_{x}$.
\index{currying}Let a function $f\in Z^{\coprod_{i\in X}Y_{i}}$
(or equivalently $f\in Z^{\coprod Y}$). Then $\curry(f)\in\prod_{i\in X}Z^{Y_{i}}$
is the function defined by the formula $(\curry(f)x)y=f(x,y)$.
\index{uncurrying}Let now $f\in\prod_{i\in X}Z^{Y_{i}}$. Then $\uncurry(f)\in Z^{\coprod_{i\in X}Y_{i}}$