-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-pf-cat.tex
305 lines (232 loc) · 10.1 KB
/
chap-pf-cat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
\chapter{Categories related with funcoids}
I consider some categories related with pointfree funcoids.
\section{Draft status}
This is a rough partial draft.
\section{Topic of this article}
In this article are considered some categories related to \emph{pointfree
funcoids}.
\section{Category of continuous morphisms}
I will denote $\Ob f$ the object (source and destination) of an
endomorphism $f$.
\begin{defn}
Let $C$ is a partially ordered category. The category
$\cont (C)$ (which I call \emph{the category of
continuous morphism} over $C$) is:
\begin{itemize}
\item Objects are endomorphisms of category $C$.
\item Morphisms are triples $(f , a , b)$ where $a$ and $b$ are objects
and $f : \Ob a \rightarrow \Ob b$ is a morphism of the
category $C$ such that $f \circ a \sqsubseteq b \circ f$.
\item Composition of morphisms is defined by the formula $(g , b , c)
\circ (f , a , b) = (g \circ f , a , c)$.
\item Identity morphisms are $(a , a , 1^C_a)$.
\end{itemize}
\end{defn}
It is really a category:
\begin{proof}
We need to prove that: composition of morphisms is a morphism, composition
is associative, and identity morphisms can be canceled on the left and on
the right.
That composition of morphisms is a morphism follows from these implications:
\[ f \circ a \sqsubseteq b \circ f \wedge g \circ b \sqsubseteq c \circ g
\Rightarrow g \circ f \circ a \sqsubseteq g \circ b \circ f \sqsubseteq c
\circ g \circ f. \]
That composition is associative is obvious.
That identity morphisms can be canceled on the left and on the right is
obvious.
\end{proof}
\begin{rem}
The ``physical'' meaning of this category is:
\begin{itemize}
\item Objects (endomorphisms of $C$) are spaces.
\item Morphisms are continuous functions between spaces.
\item $f \circ a \sqsubseteq b \circ f$ intuitively means that $f$
combined with an infinitely small is less than infinitely small combined
with $f$ (that is $f$ is continuous).
\end{itemize}
\end{rem}
\begin{rem}
Every $\Hom (\mathfrak{A}, \mathfrak{B})$ of $\mathbf{Pos}$
is partially ordered by the formula $a \leqslant b \Leftrightarrow \forall x
\in \mathfrak{A}: a (x) \leqslant b (x)$. So $\cont
(\mathbf{Pos})$ is defined.
\end{rem}
\begin{defn}
I call a $\mathbf{Pos}$-morphism \emph{monovalued} when it maps
atoms to atoms or least element.
\end{defn}
\begin{defn}
I call a $\mathbf{Pos}$-morphism \emph{entirely defined} when
its value is non-least on every non-least element.
\end{defn}
\begin{obvious}
A morphism is both monovalued and entirely defined iff it maps atoms into
atoms.
\end{obvious}
\fxnote{Show how it relates with dagger categories.}
\begin{defn}
$\mathbf{mePos}$ is the subcategory of $\mathbf{Pos}$ with
only monovalued and entirely defined morphisms.
\end{defn}
\begin{obvious}
This is a well defined category.{\hspace*{\fill}}{\medskip}
\end{obvious}
\begin{defn}
$\mathbf{mefp} \mathsf{FCD}$ is the subcategory of
$\mathbf{fp} \mathsf{FCD}$ with only monovalued and entirely
defined morphisms.
\end{defn}
\begin{rem}
In the two above definitions different definitions of monovaluedness and
entire definedness from different articles.
\end{rem}
\section{Definition of the categories}
\begin{defn}
A \emph{(pointfree) endo-funcoid} is a (pointfree) funcoid with the same
source and destination (an endomorphism of the category of (pointfree)
funcoids). I will denote $\Ob f$ the object of an endomorphism $f$.
\end{defn}
\begin{obvious}
The \emph{category of continuous pointfree funcoids} $\cont
(\mathbf{fp} \mathsf{FCD})$ is:
\begin{itemize}
\item Objects are small pointfree endo-funcoids.
\item Morphisms from an object $a$ to an object $b$ are triples $(f , a ,
b)$ where $f$ is a pointfree funcoid from $\Ob a$ to $\Ob b$
such that $f$ is a continuous morphism from $a$ to $b$ (that is $f \circ a
\sqsubseteq b \circ f$, or equivalently $a \sqsubseteq f^{- 1} \circ b \circ
f$, or equivalently $f \circ a \circ f^{- 1} \sqsubseteq f$).
\item Composition is the composition of pointfree funcoids.
\item Identity for an object $a$ is $(I^{\mathsf{FCD}}_{\Ob a}
, a , a)$.
\end{itemize}
\end{obvious}
\section{Isomorphisms}
\begin{thm}
If $f$ is an isomorphism $a \rightarrow b$ of the category
$\cont (\mathbf{fp}
\mathsf{FCD})$, then:
\begin{enumerate}
\item $f \circ a = b \circ f$;
\item $a = f^{- 1} \circ b \circ f$;
\item $f \circ a \circ f^{- 1} = b$.
\end{enumerate}
\end{thm}
\begin{proof}
Note that $f$ is monovalued and entirely defined.
1. We have $f \circ a \sqsubseteq b \circ f$ and $f^{- 1} \circ b
\sqsubseteq a \circ f^{- 1}$. Consequently $f^{- 1} \circ f \circ a
\sqsubseteq f^{- 1} \circ b \circ f$; $a \sqsubseteq f^{- 1} \circ b \circ
f$; $a \circ f^{- 1} \sqsubseteq f^{- 1} \circ b \circ f \circ f^{- 1}$; $a
\circ f^{- 1} \sqsubseteq f^{- 1} \circ b$. Similarly $b \circ f \sqsubseteq
f \circ a$. So $f \circ a = b \circ f$.
2 and 3. Follow from the definition of isomorphism.
\end{proof}
Isomorphisms are meant to preserve structure of objects. I will show that
(under certain conditions) isomorphisms of $\cont
(\mathbf{fp} \mathsf{FCD})$ really preserve
structure of objects.
First we will consider an isomorphism between objects $a$ and $b$ which are
funcoids (not the general case of pointfree funcoids). In this case a map
which preserves structure of objects is a \emph{bijection}. It is really a
bijection as the following theorem says:
\begin{thm}
If $f$ is an isomorphism of the category of funcoids then $f$ is a discrete
funcoid (so, it is essentially a bijection).
\fxnote{Split it into two propositions: about completeness and co-completeness.}
\end{thm}
\begin{proof}
$\supfun{f}^{\ast} A \sqcap \supfun{f}^{\ast} ((\Src f)
\setminus A) = 0^{\Dst f}$ because $f$ is monovalued.
$\supfun{f}^{\ast} A \sqcup \supfun{f}^{\ast} ((\Src f)
\setminus A) = 1^{\Dst f}$.
Therefore $\supfun{f}^{\ast} A$ is a principal filter (theorem 49 in
{\cite{filters}}). So $f$ is co-complete.
That $f$ is complete follows from symmetry.
\end{proof}
For wider class of pointfree funcoids the concept of bijection does not make
sense. Instead we would want a structure preserving map to be \emph{order
isomorphism}.
Actually, for mapping between $\subsets A$ and $\subsets B$ where $A$
and $B$ are some sets (including the above considered case of funcoids from
$A$ to $B$) bijection and order isomorphism are essentially the same:
\begin{prop}
Bijections $F$ between sets $A$ and $B$ bijectively correspond to order
isomorphisms $f$ between $\subsets A$ and $\subsets B$ by the formula
$f = \supfun{F}$.
\end{prop}
\begin{proof}
Let $F$ is a bijection. Then $X \subseteq Y \Rightarrow \supfun{F} X
\subseteq \supfun{F} Y$ and $\langle F^{- 1} \rangle \langle F
\rangle X = X$ for every sets $X, Y \in \subsets A$. Thus $f = \langle F
\rangle$ is an order isomorphism.
Let now $f$ is an order isomorphism between $\subsets A$ and $\subsets
B$. Then $f (\{ x \})$ is a singleton for every $x \in A$. Take $F (x)$ to
the unique $y$ such that $f (\{ x \}) = \{ y \}$. Obviously $f$ is a
bijection and $f = \supfun{F}$.
\end{proof}
For arbitrary pointfree funcoids isomorphisms do not necessarily preserve
structure. It holds only for \emph{increasing pointfree funcoids}:
\begin{defn}
I call a pointfree funcoid $f$ \emph{increasing} iff $\supfun{f}$
and $\langle f^{- 1} \rangle$ are monotone functions.
\end{defn}
\begin{prop}
If $f$ is an increasing isomorphism of the category of pointfree funcoids
then $\supfun{f}$ is an order isomorphism.
\end{prop}
\begin{proof}
We have: $\supfun{f} \circ \langle f^{- 1} \rangle = \langle f \circ
f^{- 1} \rangle = \langle \id^{\mathsf{FCD}}_{\mathfrak{B}}
\rangle = \id_{\mathfrak{B}}$ and $\langle f^{- 1} \rangle \circ
\supfun{f} = \langle f^{- 1} \circ f \rangle = \langle
\id^{\mathsf{FCD}}_{\mathfrak{A}} \rangle =
\id_{\mathfrak{A}}$. Thus $\supfun{f}$ is a bijection.
$\supfun{f}$ is increasing and bijective.
\end{proof}
\begin{rem}
Non-increasing isomorphisms of the category of pointfree funcoids are
against sound mind, they don't preserve the structure of the source, that is
for them $\supfun{f}$ or $\langle f^{- 1} \rangle$ are not order
isomorphisms.
\end{rem}
\begin{obvious}
Isomorphisms of $\cont (\mathbf{Pos})$ and
$\cont (\mathbf{mePos})$ are order
isomorphisms.
\end{obvious}
\section{Direct products}
\fxerror{Now this section is a complete mess. Clean it up.}
Consider the category $\mathbf{contFcd}$ which is the full
subcategory $\cont (\mathbf{mePos})$ restricted to
objects which are essentially increasing pointfree funcoids.
Let $f_1 : Y \rightarrow X_1$ and $f_2 : Y \rightarrow X_2$ are morphisms of
$\mathbf{contFcd}$.
The product object is $X_1 \times^{(C)} X_2$ (cross composition product of
funcoids used). It is easy to see that $X_1 \times^{(C)} X_2$ is an object of
$\mathbf{contFcd}$ that is an endo-funcoid.
The morphism $f_1 \times^{(D)} f_2 : Y \rightarrow X_1 \times^{(C)} X_2$ is
defined by the formula $(f_1 \times^{(D)} f_2) y = f_1 y
\times^{\mathsf{FCD}} f_2 y$.
$f_1 \times^{(D)} f_2$ is monovalued and entirely defined because so are $f_1$
and $f_2$.
\[ (f_1 \times^{(D 2)} f_2) y = \bigcup \left\{ f_1 Y
\times^{\mathsf{FCD}} f_2 Y \hspace{1em} | \hspace{1em} Y \in
\atoms^{\mathfrak{A}} y \right\} . \]
\fxnote{Is $(f_1 \times^{(D 2)} f_2)$ a pointfree funcoid?}
To prove that it is really a morphism we need to show
\[ (f_1 \times^{(D)} f_2) \circ Y \sqsubseteq (X_1 \times^{(C)} X_2) \circ
(f_1 \times^{(D)} f_2) \]
that is (for every $y$)
\[ (f_1 \times^{(D)} f_2) Y y \sqsubseteq (X_1 \times^{(C)} X_2) (f_1
\times^{(D)} f_2) y. \]
Really, $(f_1 \times^{(D)} f_2) Y y = f_1 Y y \times^{\mathsf{FCD}} f_2
Y y$;
$(X_1 \times^{(C)} X_2) (f_1 \times^{(D)} f_2) y = (X_1 \times^{(C)} X_2) (f_1
y \times^{\mathsf{FCD}} f_2 y) = X_1 f_1 y \times^{\mathsf{FCD}}
X_2 f_2 y$;
but it is easy to show $f_1 Y y \times^{\mathsf{FCD}} f_2 Y y
\sqsubseteq X_1 f_1 y \times^{\mathsf{FCD}} X_2 f_2 y$.
??
I define ??
\fxnote{Prove that it is a direct product in $\mathbf{contFcd}$.}