-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-pf-funcoid-filt.tex
57 lines (48 loc) · 3.11 KB
/
chap-pf-funcoid-filt.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
\chapter{Filterization of pointfree funcoids}
Let $(\mathfrak{A},\mathfrak{Z}_0)$ and $(\mathfrak{B},\mathfrak{Z}_1)$ be primary filtrators over boolean lattices.
By corollary~\bookref{filt-is-complete} we have that $\mathfrak{A}$ and~$\mathfrak{B}$ are complete lattices.
Let $f$ be a pointfree funcoid $\mathfrak{Z}_0\rightarrow\mathfrak{Z}_1$. Define pointfree funcoid~$\uparrow f$ (\emph{filterization} of~$f$)
by the formulas
\[
\supfun{\uparrow f} \mathcal{X} = \bigsqcap^{\mathfrak{B}}_{X\in\up\mathcal{X}} \supfun{f}X \quad\text{and}\quad
\supfun{\uparrow f^{-1}} \mathcal{Y} = \bigsqcap^{\mathfrak{A}}_{Y\in\up\mathcal{Y}} \supfun{f^{-1}}Y.
\]
\begin{prop}
$\uparrow f$ is a pointfree funcoid.
\end{prop}
\begin{proof}
~
\begin{multline*}
\mathcal{Y} \nasymp \supfun{\uparrow f} \mathcal{X} \Leftrightarrow
\mathcal{Y} \nasymp \bigsqcap^{\mathfrak{B}}_{X\in\up\mathcal{X}} \supfun{f}X \Leftrightarrow \\
\bigsqcap^{\mathfrak{B}}_{X\in\up\mathcal{X}} (\mathcal{Y} \sqcap^{\mathfrak{B}} \supfun{f}X) \ne \bot \Leftrightarrow \text{ (corollary~\bookref{genbase-corr}*)} \\
\forall X\in\up\mathcal{X}: \mathcal{Y} \sqcap^{\mathfrak{B}} \supfun{f}X \ne \bot \Leftrightarrow \text{ (theorem \bookref{when-sep-core})} \\
\forall X\in\up\mathcal{X}, Y\in\up\mathcal{Y}: Y \sqcap^{\mathfrak{B}} \supfun{f}X \ne \bot \Leftrightarrow \text{ (corollary \bookref{f-meet-closed})} \\
\forall X\in\up\mathcal{X}, Y\in\up\mathcal{Y}: Y \sqcap^{\mathfrak{Z}_1} \supfun{f}X \ne \bot \Leftrightarrow \\
\forall X\in\up\mathcal{X}, Y\in\up\mathcal{Y}: X\suprel{f}Y.
\end{multline*}
* To apply corollary~\bookref{genbase-corr} we need to show that
$\setcond{\mathcal{Y} \sqcap^{\mathfrak{B}} \supfun{f}X}{X\in\up\mathcal{X}}$ is a generalized filter base.
To show it is enough to show that $\setcond{\supfun{f}X}{X\in\up\mathcal{X}}$ is a generalized filter base.
But this easily follows from proposition~\bookref{pfcd-mono} and~\bookref{filt-is-sep}.
Similarly $\mathcal{X} \nasymp \supfun{\uparrow f^{-1}} \mathcal{Y} \Leftrightarrow
\forall X\in\up\mathcal{X}, Y\in\up\mathcal{Y}: X\suprel{f}Y$.
Thus $\mathcal{Y} \nasymp \supfun{\uparrow f} \mathcal{X} \Leftrightarrow \mathcal{X} \nasymp \supfun{\uparrow f^{-1}} \mathcal{Y}$.
\end{proof}
\begin{prop}
The above defined~$\uparrow$ is an injection.
\end{prop}
\begin{proof}
$\supfun{\uparrow f} X = \bigsqcap^{\mathfrak{B}}_{X'\in\up X} \supfun{f}X' = \min_{X'\in\up X} \supfun{f}X' = \supfun{f}X$.
So $\supfun{f}$ is determined by $\supfun{\uparrow f}$. Likewise $\supfun{f^{-1}}$ is determined by $\supfun{\uparrow f^{-1}}$.
\end{proof}
\begin{conjecture}
(Non generalizing of theorem~\bookref{pf-rel})
Pointfree funcoids~$f$ between some: a. atomistic but non-complete; b. complete but non-atomistic boolean lattices~$\mathfrak{Z}_0$ and~$\mathfrak{Z}_1$
do not bijectively correspond to morphisms~$p\in\mathbf{Rel}(\atoms\mathfrak{Z}_0,\atoms\mathfrak{Z}_1)$ by the formulas:
\begin{gather*}
\supfun{f}X = \bigsqcup\rsupfun{p}\atoms X, \quad
\supfun{f^{-1}}Y = \bigsqcup\rsupfun{p^{-1}}\atoms Y; \\
(x,y)\in\GR p \Leftrightarrow y\in\atoms\supfun{f}x \Leftrightarrow x\in\atoms\supfun{f^{-1}}y.
\end{gather*}
\end{conjecture}