-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-reloids.tex
902 lines (800 loc) · 41.2 KB
/
chap-reloids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
\chapter{Reloids}
\section{Basic definitions}
\begin{defn}
Let $A$, $B$ be sets.
$\mathsf{RLD}\sharp(A,B)$ is the base of an arbitrary but fixed primary filtrator over $\mathbf{Rel}(A,B)$.
\end{defn}
\begin{obvious}
$(\mathsf{RLD}\sharp(A,B),\mathbf{Rel}(A,B))$ is a powerset filtrator.
\end{obvious}
\begin{defn}
\index{reloid}I call a reloid from a set $A$ to a set $B$ a triple
$(A,B,F)$ where $F\in\mathsf{RLD}\sharp(A,B)$.
\end{defn}
\begin{defn}
\index{reloid!source}\index{reloid!destination}\emph{Source} and
\emph{destination} of every reloid $(A,B,F)$ are defined as
\[
\Src(A,B,F)=A\quad\text{and}\quad\Dst(A,B,F)=B.
\]
\end{defn}
I will denote $\mathsf{RLD}(A,B)$ the set of reloids from $A$ to
$B$.
I will denote $\mathsf{RLD}$ the set of all reloids (for small sets).
\begin{defn}
\index{endo-reloid}I will call \emph{endoreloids} reloids with the
same source and destination.
\end{defn}
\begin{defn}
~
\begin{itemize}
\item $\uparrow^{\mathsf{RLD}\sharp}f$ is the principal filter object corresponding to a $\mathbf{Rel}$-morphism~$f$.
\item $\uparrow^{\mathsf{RLD}\sharp(A,B)} f=\uparrow^{\mathsf{RLD}\sharp}(A,B,f)$ for every binary relation $f\in\subsets(A\times B)$.
\item $\uparrow^{\mathsf{RLD}}f=(\Src f,\Dst f,\uparrow^{\mathsf{RLD}\sharp}f)$
for every $\mathbf{Rel}$-morphism $f$.
\item $\uparrow^{\mathsf{RLD}(A,B)}f=\uparrow^{\mathsf{RLD}}(A,B,f)$ for every binary relation $f\in\subsets(A\times B)$.
\end{itemize}
\end{defn}
\begin{defn}
\index{reloid!principal}I call members of a set $\rsupfun{\uparrow^{\mathsf{RLD}}}\mathbf{Rel}(A,B)$
as \emph{principal} reloids.
\end{defn}
Reloids are a generalization of uniform spaces. Also reloids are generalization
of binary relations.
\begin{defn}
$\up f^{-1} = \setcond{F^{-1}}{F\in\up f}$ for every $f\in\mathsf{RLD}\sharp(A,B)$.
\end{defn}
\begin{prop}
$f^{-1}$ exists and $f^{-1}\in\mathsf{RLD}\sharp(B,A)$.
\end{prop}
\begin{proof}
We need to prove that $\setcond{F^{-1}}{F\in\up f}$ is a filter, but that's obvious.
\end{proof}
\begin{defn}
\index{reloid!reverse}The \emph{reverse} reloid of a reloid is defined
by the formula
\[
(A,B,F)^{-1}=(B,A,F^{-1}).
\]
\end{defn}
\begin{note}
The reverse reloid is \emph{not} an inverse in the sense of group
theory or category theory.
\end{note}
Reverse reloid is a generalization of conjugate quasi-uniformity.
\begin{defn}
Every set $\mathsf{RLD}(A,B)$ is a poset by the formula $f\sqsubseteq g\Leftrightarrow\GR f\sqsubseteq\GR g$.
We will apply lattice operations to subsets of $\mathsf{RLD}(A,B)$
without explicitly mentioning $\mathsf{RLD}(A,B)$.\end{defn}
\emph{Filtrators of reloids} are $(\mathsf{RLD}(A,B),\mathbf{Rel}(A,B))$
(for all sets $A$, $B$). Here I equate principal reloids with corresponding $\mathbf{Rel}$-morphisms.
\begin{obvious}
$(\mathsf{RLD}(A,B),\mathbf{Rel}(A,B))$ is a powerset filtrator isomorphic to the filtrator
$(\mathsf{RLD}\sharp(A,B),\mathbf{Rel}(A,B))$. Thus $\mathsf{RLD}(A,B)$ is a special case of $\mathsf{RLD}\sharp(A,B)$.
\end{obvious}
\section{Composition of reloids}
\begin{defn}
\index{composable!reloids}Reloids $f$ and $g$ are \emph{composable}
when $\Dst f=\Src g$.
\end{defn}
\begin{defn}
\index{composition!of reloids}\emph{Composition} of (composable)
reloids is defined by the formula
\[
g\circ f=\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g}.
\]
\end{defn}
\begin{obvious}
Composition of reloids is a reloid.
\end{obvious}
\begin{obvious}
$\uparrow^{\mathsf{RLD}}g\circ\uparrow^{\mathsf{RLD}}f=\uparrow^{\mathsf{RLD}}(g\circ f)$
for composable morphisms~$f$,~$g$ of category~$\mathbf{Rel}$.\end{obvious}
\begin{thm}
$(h\circ g)\circ f=h\circ(g\circ f)$ for every composable reloids
$f$, $g$, $h$.\end{thm}
\begin{proof}
For two nonempty collections~$A$ and~$B$ of sets I will denote
\[
A\sim B\Leftrightarrow\forall K\in A\exists L\in B:L\subseteq K\wedge\forall K\in B\exists L\in A:L\subseteq K.
\]
It is easy to see that $\sim$ is a transitive relation.
I will denote $B\circ A=\setcond{L\circ K}{K\in A,L\in B}$.
Let first prove that for every nonempty collections of relations $A$,
$B$, $C$
\[
A\sim B\Rightarrow A\circ C\sim B\circ C.
\]
Suppose $A\sim B$ and $P\in A\circ C$ that is $K\in A$ and $M\in C$
such that $P=K\circ M$. $\exists K'\in B:K'\subseteq K$ because
$A\sim B$. We have $P'=K'\circ M\in B\circ C$. Obviously $P'\subseteq P$.
So for every $P\in A\circ C$ there exists $P'\in B\circ C$ such
that $P'\subseteq P$; the vice versa is analogous. So $A\circ C\sim B\circ C$.
$\up((h\circ g)\circ f)\sim\up(h\circ g)\circ\up f$, $\up(h\circ g)\sim(\up h)\circ(\up g)$.
By proven above $\up((h\circ g)\circ f)\sim(\up h)\circ(\up g)\circ(\up f)$.
Analogously $\up(h\circ(g\circ f))\sim(\up h)\circ(\up g)\circ(\up f)$.
So $\up(h\circ(g\circ f))\sim\up((h\circ g)\circ f)$ what is possible
only if $\up(h\circ(g\circ f))=\up((h\circ g)\circ f)$. Thus $(h\circ g)\circ f=h\circ(g\circ f)$.\end{proof}
\begin{xca}
Prove $f_n\circ\dots\circ f_0 = \bigsqcap^{\mathsf{RLD}}\setcond{F_n\circ\dots\circ F_0}{F_i\in\up f_i}$
for every composable reloids~$f_0,\dots,f_n$ where $n$ is an integer, independently of the inserted parentheses.
(Hint: Use generalized filter bases.)
\end{xca}
\begin{thm}
\label{rld-prod-ff}For every reloid $f$:
\begin{enumerate}
\item \label{rld-ff}$f\circ f=\bigsqcap^{\mathsf{RLD}}\setcond{F\circ F}{F\in\up f}$
if $\Src f=\Dst f$;
\item \label{rld-f1f}$f^{-1}\circ f=\bigsqcap^{\mathsf{RLD}}\setcond{F^{-1}\circ F}{F\in\up f}$;
\item \label{rld-ff1}$f\circ f^{-1}=\bigsqcap^{\mathsf{RLD}}\setcond{F\circ F^{-1}}{F\in\up f}$.
\end{enumerate}
\end{thm}
\begin{proof}
I will prove only \ref{rld-ff} and \ref{rld-f1f} because \ref{rld-ff1}
is analogous to \ref{rld-f1f}.
\begin{widedisorder}
\item [{\ref{rld-ff}}] It's enough to show that $\forall F,G\in\up f\exists H\in\up f:H\circ H\sqsubseteq G\circ F$.
To prove it take $H=F\sqcap G$.
\item [{\ref{rld-f1f}}] It's enough to show that $\forall F,G\in\up f\exists H\in\up f:H^{-1}\circ H\sqsubseteq G^{-1}\circ F$.
To prove it take $H=F\sqcap G$. Then $H^{-1}\circ H=(F\sqcap G)^{-1}\circ(F\sqcap G)\sqsubseteq G^{-1}\circ F$.
\end{widedisorder}
\end{proof}
\begin{xca}\label{rld-fn}
Prove $f^n = \bigsqcap^{\mathsf{RLD}}\setcond{F^n}{F\in\up f}$ for every endofuncoid~$f$ and positive integer~$n$.
\end{xca}
\begin{thm}
For every sets $A$, $B$, $C$ if $g,h\in\mathsf{RLD}(A,B)$ then
\begin{enumerate}
\item $f\circ(g\sqcup h)=f\circ g\sqcup f\circ h$ for every $f\in\mathsf{RLD}(B,C)$;
\item $(g\sqcup h)\circ f=g\circ f\sqcup h\circ f$ for every $f\in\mathsf{RLD}(C,A)$.
\end{enumerate}
\end{thm}
\begin{proof}
We'll prove only the first as the second is dual.
By the infinite distributivity law for filters we have
\begin{align*}
f\circ g\sqcup f\circ h & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{F\circ G}{F\in\up f,G\in\up g}\sqcup\bigsqcap^{\mathsf{RLD}}\setcond{F\circ H}{F\in\up f,H\in\up h} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{(F_{1}\circ G)\sqcup^{\mathsf{RLD}}(F_{2}\circ H)}{F_{1},F_{2}\in\up f,G\in\up g,H\in\up h} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{(F_{1}\circ G)\sqcup(F_{2}\circ H)}{F_{1},F_{2}\in\up f,G\in\up g,H\in\up h}.
\end{align*}
Obviously
\begin{align*}
\bigsqcap^{\mathsf{RLD}}\setcond{(F_{1}\circ G)\sqcup(F_{2}\circ H)}{F_{1},F_{2}\in\up f,G\in\up g,H\in\up h} & \sqsupseteq\\
\bigsqcap^{\mathsf{RLD}}\setcond{(((F_{1}\sqcap F_{2})\circ G)\sqcup((F_{1}\sqcap F_{2})\circ H))}{F_{1},F_{2}\in\up f,G\in\up g,H\in\up h} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{(F\circ G)\sqcup(F\circ H)}{F\in\up f,G\in\up g,H\in\up h} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{F\circ(G\sqcup H)}{F\in\up f,G\in\up g,H\in\up h}.
\end{align*}
Because $G\in\up g\land H\in\up h\Rightarrow G\sqcup H\in\up(g\sqcup h)$
we have
\begin{align*}
\bigsqcap^{\mathsf{RLD}}\setcond{F\circ(G\sqcup H)}{F\in\up f,G\in\up g,H\in\up h} & \sqsupseteq\\
\bigsqcap^{\mathsf{RLD}}\setcond{F\circ K}{F\in\up f,K\in\up(g\sqcup h)} & =\\
f\circ(g\sqcup h).
\end{align*}
Thus we have proved $f\circ g\sqcup f\circ h\sqsupseteq f\circ(g\sqcup h)$.
But obviously $f\circ(g\sqcup h)\sqsupseteq f\circ g$ and $f\circ(g\sqcup h)\sqsupseteq f\circ h$
and so $f\circ(g\sqcup h)\sqsupseteq f\circ g\sqcup f\circ h$. Thus
$f\circ(g\sqcup h)=f\circ g\sqcup f\circ h$.\end{proof}
\begin{thm}
\label{rld-cross}Let $A$, $B$, $C$ be sets, $f\in\mathsf{RLD}(A,B)$,
$g\in\mathsf{RLD}(B,C)$, $h\in\mathsf{RLD}(A,C)$. Then
\[
g\circ f\nasymp h\Leftrightarrow g\nasymp h\circ f^{-1}.
\]
\end{thm}
\begin{proof}
~
\begin{align*}
g\circ f\nasymp h & \Leftrightarrow\\
\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g}\sqcap\bigsqcap^{\mathsf{RLD}}\up h\ne\bot & \Leftrightarrow\\
\bigsqcap^{\mathsf{RLD}}\setcond{(G\circ F)\sqcap^{\mathsf{RLD}} H}{F\in\up f,G\in\up g,H\in\up h}\ne\bot & \Leftrightarrow\\
\bigsqcap^{\mathsf{RLD}}\setcond{(G\circ F)\sqcap H}{F\in\up f,G\in\up g,H\in\up h}\ne\bot & \Leftrightarrow\\
\forall F\in\up f,G\in\up g,H\in\up h:\uparrow^{\mathsf{RLD}}((G\circ F)\sqcap H)\ne\bot & \Leftrightarrow\\
\forall F\in\up f,G\in\up g,H\in\up h:G\circ F\nasymp H
\end{align*}
(used properties of generalized filter bases).
Similarly $g\nasymp h\circ f^{-1}\Leftrightarrow\forall F\in\up f,G\in\up g,H\in\up h:G\nasymp H\circ F^{-1}$.
Thus $g\circ f\nasymp h\Leftrightarrow g\nasymp h\circ f^{-1}$ because
$G\circ F\nasymp H\Leftrightarrow G\nasymp H\circ F^{-1}$ by proposition
\ref{rel-cross}.\end{proof}
\begin{thm}
For every composable reloids $f$ and $g$
\begin{enumerate}
\item $g\circ f=\bigsqcup\setcond{g\circ F}{F\in\atoms f}$.
\item $g\circ f=\bigsqcup\setcond{G\circ f}{G\in\atoms g}$.
\end{enumerate}
\end{thm}
\begin{proof}
We will prove only the first as the second is dual.
\end{proof}
Obviously $\bigsqcup\setcond{g\circ F}{F\in\atoms f}\sqsubseteq g\circ f$. We need to prove $\bigsqcup\setcond{g\circ F}{F\in\atoms f}\sqsupseteq g\circ f$.
Really,
\begin{align*}
\bigsqcup\setcond{g\circ F}{F\in\atoms f}\sqsupseteq g\circ f & \Leftrightarrow\\
\forall x\in\mathsf{RLD}(\Src f,\Dst g):\left(x\nasymp g\circ f\Rightarrow x\nasymp\bigsqcup\setcond{g\circ F}{F\in\atoms f}\right) & \Leftarrow\\
\forall x\in\mathsf{RLD}(\Src f,\Dst g):\left(x\nasymp g\circ f\Rightarrow \exists F\in\atoms f:x\nasymp g\circ F\right) & \Leftrightarrow\\
\forall x\in\mathsf{RLD}(\Src f,\Dst g):(g^{-1}\circ x\nasymp f\Rightarrow \exists F\in\atoms f:g^{-1}\circ x\nasymp F)
\end{align*}
what is obviously true.
\begin{cor}
\label{rld-comp-at}If $f$ and $g$ are composable reloids, then
\[
g\circ f=\bigsqcup\setcond{G\circ F}{F\in\atoms f,G\in\atoms g}.
\]
\end{cor}
\begin{proof}
$g\circ f=\bigsqcup_{F\in\atoms f}(g\circ F)=\bigsqcup_{F\in\atoms f}\bigsqcup_{G\in\atoms g}(G\circ F)=\bigsqcup\setcond{G\circ F}{F\in\atoms f,G\in\atoms g}$.
\end{proof}
\section{Reloidal product of filters}
\begin{defn}
\index{product!reloidal}Reloidal product of filters $\mathcal{A}$
and $\mathcal{B}$ is defined by the formula
\[
\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}\eqdef\bigsqcap^{\mathsf{RLD}}\setcond{A\times B}{A\in\up\mathcal{A},B\in\up\mathcal{B}}.
\]
\end{defn}
\begin{obvious}
~
\begin{itemize}
\item $\uparrow^{U}A\times^{\mathsf{RLD}}\uparrow^{V}B=\uparrow^{\mathsf{RLD}(U,V)}(A\times B)$
for every sets $A\subseteq U$, $B\subseteq V$.
\item $\uparrow A\times^{\mathsf{RLD}}\uparrow B=\uparrow^{\mathsf{RLD}}(A\times B)$
for every typed sets~$A$,~$B$.\end{itemize}
\end{obvious}
\begin{thm}
\label{rld-prod-t-atoms}$\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}=\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms\mathcal{A},b\in\atoms\mathcal{B}}$
for every filters $\mathcal{A}$ and $\mathcal{B}$.\end{thm}
\begin{proof}
Obviously $\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}\sqsupseteq\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms\mathcal{A},b\in\atoms\mathcal{B}}$.
Reversely, let $K\in\up\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms\mathcal{A},b\in\atoms\mathcal{B}}$.
Then $K\in\up(a\times^{\mathsf{RLD}}b)$ for every $a\in\atoms\mathcal{A}$,
$b\in\atoms\mathcal{B}$. $K\sqsupseteq X_{a}\times Y_{b}$ for some
$X_{a}\in\up a$, $Y_{b}\in\up b$;
\begin{multline*}
K\sqsupseteq\bigsqcup\setcond{X_{a}\times Y_{b}}{a\in\atoms\mathcal{A},b\in\atoms\mathcal{B}}=\\
\bigsqcup\setcond{X_{a}}{a\in\atoms\mathcal{A}}\times\bigsqcup\setcond{Y_{b}}{b\in\atoms\mathcal{B}}\sqsupseteq A\times B
\end{multline*}
where $A\in\up\mathcal{A}$, $B\in\up\mathcal{B}$; $K\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$.\end{proof}
\begin{thm}
If $\mathcal{A}_{0},\mathcal{A}_{1}\in\mathscr{F}(A)$, $\mathcal{B}_{0},\mathcal{B}_{1}\in\mathscr{F}(B)$
for some sets $A$, $B$ then
\[
\ensuremath{(\mathcal{A}_{0}\times^{\mathsf{RLD}}\mathcal{B}_{0})\sqcap(\mathcal{A}_{1}\times^{\mathsf{RLD}}\mathcal{B}_{1})=(\mathcal{A}_{0}\sqcap\mathcal{A}_{1})\times^{\mathsf{RLD}}(\mathcal{B}_{0}\sqcap\mathcal{B}_{1}).}
\]
\end{thm}
\begin{proof}
~
\begin{align*}
(\mathcal{A}_{0}\times^{\mathsf{RLD}}\mathcal{B}_{0})\sqcap(\mathcal{A}_{1}\times^{\mathsf{RLD}}\mathcal{B}_{1}) & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{P\sqcap Q}{P\in\up(\mathcal{A}_{0}\times^{\mathsf{RLD}}\mathcal{B}_{0}),Q\in\up(\mathcal{A}_{1}\times^{\mathsf{RLD}}\mathcal{B}_{1})} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{(A_{0}\times B_{0})\sqcap(A_{1}\times B_{1})}{A_{0}\in\up\mathcal{A}_{0},B_{0}\in\up\mathcal{B}_{0},A_{1}\in\up\mathcal{A}_{1},B_{1}\in\up\mathcal{B}_{1}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{(A_{0}\sqcap A_{1})\times(B_{0}\sqcap B_{1})}{A_{0}\in\up\mathcal{A}_{0},B_{0}\in\up\mathcal{B}_{0},A_{1}\in\up\mathcal{A}_{1},B_{1}\in\up\mathcal{B}_{1}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{K\times L}{K\in\up(\mathcal{A}_{0}\sqcap\mathcal{A}_{1}),L\in\up(\mathcal{B}_{0}\sqcap\mathcal{B}_{1})} & =\\
(\mathcal{A}_{0}\sqcap\mathcal{A}_{1})\times^{\mathsf{RLD}}(\mathcal{B}_{0}\sqcap\mathcal{B}_{1}).
\end{align*}
\end{proof}
\begin{thm}
\label{meet-rld-prod}If $S\in\subsets(\mathscr{F}(A)\times\mathscr{F}(B))$
for some sets $A$, $B$ then
\[
\bigsqcap\setcond{\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}}{(\mathcal{A},\mathcal{B})\in S}=\bigsqcap\dom S\times^{\mathsf{RLD}}\bigsqcap\im S.
\]
\end{thm}
\begin{proof}
Let $\mathcal{P}=\bigsqcap\dom S$, $\mathcal{Q}=\bigsqcap\im S$;
$l=\bigsqcap\setcond{\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}}{(\mathcal{A},\mathcal{B})\in S}$.
$\mathcal{P}\times^{\mathsf{RLD}}\mathcal{Q}\sqsubseteq l$ is obvious.
Let $F\in\up(\mathcal{P}\times^{\mathsf{RLD}}\mathcal{Q})$. Then
there exist $P\in\up\mathcal{P}$ and $Q\in\up\mathcal{Q}$ such that
$F\sqsupseteq P\times Q$.
$P=P_{1}\sqcap\dots\sqcap P_{n}$ where $P_{i}\in\dom S$ and $Q=Q_{1}\sqcap\dots\sqcap Q_{m}$
where $Q_{j}\in\im S$.
$P\times Q=\bigsqcap_{i,j}(P_{i}\times Q_{j})$.
$P_{i}\times Q_{j}\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$
for some $(\mathcal{A},\mathcal{B})\in S$. $P\times Q=\bigsqcap_{i,j}(P_{i}\times Q_{j})\in\up l$.
So $F\in\up l$.\end{proof}
\begin{cor}
$\bigsqcap\rsupfun{\mathcal{A}\times^{\mathsf{RLD}}}T=\mathcal{A}\times^{\mathsf{RLD}}\bigsqcap T$
if $\mathcal{A}$ is a filter and $T$ is a set of filters with common
base.\end{cor}
\begin{proof}
Take $S=\{\mathcal{A}\}\times T$ where $T$ is a set of filters.
Then $\bigsqcap\setcond{\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}}{\mathcal{B}\in T}=\mathcal{A}\times^{\mathsf{RLD}}\bigsqcap T$
that is $\bigsqcap\rsupfun{\mathcal{A}\times^{\mathsf{RLD}}}T=\mathcal{A}\times^{\mathsf{RLD}}\bigsqcap T$.\end{proof}
\begin{defn}
\index{reloid!convex}I will call a reloid \emph{convex} iff it is
a join of direct products.
\end{defn}
\section{Restricting reloid to a filter. Domain and image}
\begin{defn}
\index{reloid!identity}\emph{Identity reloid} for a set $A$ is defined
by the formula $1_{A}^{\mathsf{RLD}}=\uparrow^{\mathsf{RLD}(A,A)}\id_{A}$.\end{defn}
\begin{obvious}
$(1_{A}^{\mathsf{RLD}})^{-1}=1_{A}^{\mathsf{RLD}}$.\end{obvious}
\begin{defn}
\index{restricting!reloid}I define \emph{restricting} a reloid $f$
to a filter $\mathcal{A}$ as $f|_{\mathcal{A}}=f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})$.
\end{defn}
\begin{defn}
\index{reloid!domain}\index{reloid!image}\emph{Domain} and \emph{image}
of a reloid $f$ are defined as follows:
\[
\dom f=\bigsqcap^{\mathscr{F}}\rsupfun{\dom}\up f;\quad\im f=\bigsqcap^{\mathscr{F}}\rsupfun{\im}\up f.
\]
\end{defn}
\begin{prop}
$f\sqsubseteq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}\Leftrightarrow\dom f\sqsubseteq\mathcal{A}\land\im f\sqsubseteq\mathcal{B}$
for every reloid $f$ and filters $\mathcal{A}\in\mathscr{F}(\Src f)$,
$\mathcal{B}\in\mathscr{F}(\Dst f)$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] It follows from $\dom(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})\sqsubseteq\mathcal{A}\land\im(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})\sqsubseteq\mathcal{B}$.
\item [{$\Leftarrow$}] $\dom f\sqsubseteq\mathcal{A}\Leftrightarrow\forall A\in\up\mathcal{A}\exists F\in\up f:\dom F\sqsubseteq A$.
Analogously
$\im f\sqsubseteq\mathcal{B}\Leftrightarrow\forall B\in\up\mathcal{B}\exists G\in\up f:\im G\sqsubseteq B$.
Let $\dom f\sqsubseteq\mathcal{A}\land\im f\sqsubseteq\mathcal{B}$,
$A\in\up\mathcal{A}$, $B\in\up\mathcal{B}$. Then there exist $F,G\in\up f$
such that $\dom F\sqsubseteq A\land\im G\sqsubseteq B$. Consequently
$F\sqcap G\in\up f$, $\dom(F\sqcap G)\sqsubseteq A$, $\im(F\sqcap G)\sqsubseteq B$
that is $F\sqcap G\sqsubseteq A\times B$. So there exists $H\in\up f$
such that $H\sqsubseteq A\times B$ for every $A\in\up\mathcal{A}$,
$B\in\up\mathcal{B}$. So $f\sqsubseteq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$.
\end{description}
\end{proof}
\begin{defn}
\index{restricted identity reloid}I call \emph{restricted identity
reloid} for a filter $\mathcal{A}$ the reloid
\[
\id_{\mathcal{A}}^{\mathsf{RLD}}=(1_{\Base(\mathcal{A})}^{\mathsf{RLD}})|_{\mathcal{A}}.
\]
\end{defn}
\begin{thm}
$\id_{\mathcal{A}}^{\mathsf{RLD}}=\bigsqcap_{A\in\up\mathcal{A}}^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A}$
for every filter $\mathcal{A}$.\end{thm}
\begin{proof}
Let $K\in\up\bigsqcap_{A\in\up\mathcal{A}}^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A}$,
then there exists $A\in\up\mathcal{A}$ such that $\GR K\supseteq\id_{A}$.
Then
\begin{align*}
\id_{\mathcal{A}}^{\mathsf{RLD}} & \sqsubseteq\\
\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{\Base(\mathcal{A})}\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\top) & \sqsubseteq\\
\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{\Base(\mathcal{A})}\sqcap(A\times^{\mathsf{RLD}}\top) & =\\
\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{\Base(\mathcal{A})}\sqcap\uparrow^{\mathsf{RLD}}(A\times\top) & =\\
\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}(\id_{\Base(\mathcal{A})}\cap\GR(A\times\top)) & =\\
\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A} & \sqsubseteq K.
\end{align*}
Thus $K\in\up\id_{\mathcal{A}}^{\mathsf{RLD}}$.
Reversely let $K\in\up\id_{\mathcal{A}}^{\mathsf{RLD}}=\up(1_{\Base(\mathcal{A})}^{\mathsf{RLD}}\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\top))$,
then there exists $A\in\up\mathcal{A}$ such that
\begin{align*}
K\in\up\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}(\id_{\Base(\mathcal{A})}\cap\GR(A\times\top)) & =\\
\up\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A} & \sqsupseteq\\
\up\bigsqcap_{A\in\up\mathcal{A}}^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A}.
\end{align*}
\end{proof}
\begin{cor}
$(\id_{\mathcal{A}}^{\mathsf{RLD}})^{-1}=\id_{\mathcal{A}}^{\mathsf{RLD}}$.\end{cor}
\begin{thm}
$f|_{\mathcal{A}}=f\circ\id_{\mathcal{A}}^{\mathsf{RLD}}$ for every
reloid $f$ and $\mathcal{A}\in\mathscr{F}(\Src f)$.\end{thm}
\begin{proof}
We need to prove that
\[
f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\top)=f\circ\bigsqcap^{\mathsf{RLD}(\Src f,\Src f)}\setcond{\id_{A}}{A\in\up\mathcal{A}}.
\]
We have
\begin{align*}
f\circ\bigsqcap^{\mathsf{RLD}(\Src f,\Src f)}\setcond{\id_{A}}{A\in\up\mathcal{A}} & =\\
\bigsqcap^{\mathsf{RLD}(\Src f,\Src f)}\setcond{\GR(F)\circ\id_{A}}{F\in\up f,A\in\up\mathcal{A}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{F|_{A}}{F\in\up f,A\in\up\mathcal{A}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{F\sqcap(A\times\top^{\mathscr{T}(\Dst f)})}{F\in\up f,A\in\up\mathcal{A}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond F{F\in\up f}\sqcap\bigsqcap^{\mathsf{RLD}}\setcond{A\times\top^{\mathscr{T}(\Dst f)}}{A\in\up\mathcal{A}} & =\\
f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\top).
\end{align*}
\end{proof}
\begin{thm}
$(g\circ f)|_{\mathcal{A}}=g\circ(f|_{\mathcal{A}})$ for every composable
reloids $f$ and $g$ and $\mathcal{A}\in\mathscr{F}(\Src f)$.\end{thm}
\begin{proof}
$(g\circ f)|_{\mathcal{A}}=(g\circ f)\circ\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}}=g\circ(f\circ\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}})=g\circ(f|_{\mathcal{A}})$.\end{proof}
\begin{thm}
$f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})=\id_{\mathcal{B}}^{\mathsf{\mathsf{RLD}}}\circ f\circ\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}}$
for every reloid $f$ and $\mathcal{A}\in\mathscr{F}(\Src f)$, $\mathcal{B}\in\mathscr{F}(\Dst f)$.\end{thm}
\begin{proof}
~
\begin{align*}
f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}) & =\\
f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})\sqcap(\top^{\mathscr{F}(\Src f)}\times^{\mathsf{RLD}}\mathcal{B}) & =\\
f|_{\mathcal{A}}\sqcap(\top^{\mathscr{F}(\Src f)}\times^{\mathsf{RLD}}\mathcal{B}) & =\\
(f\circ\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}})\sqcap(\top^{\mathscr{F}(\Src f)}\times^{\mathsf{RLD}}\mathcal{B}) & =\\
((f\circ\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}})^{-1}\sqcap(\top^{\mathscr{F}(\Src f)}\times^{\mathsf{RLD}}\mathcal{B})^{-1})^{-1} & =\\
((\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}}\circ f^{-1})\sqcap(\mathcal{B}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Src f)}))^{-1} & =\\
(\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}}\circ f^{-1}\circ\id_{\mathcal{B}}^{\mathsf{\mathsf{RLD}}})^{-1} & =\\
\id_{\mathcal{B}}^{\mathsf{\mathsf{RLD}}}\circ f\circ\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}}.
\end{align*}
\end{proof}
\begin{prop}\label{rld-id-comp}
$\id_{\mathcal{B}}\circ\id_{\mathcal{A}} = \id_{\mathcal{A}\sqcap\mathcal{B}}$ for all filters~$\mathcal{A}$,~$\mathcal{B}$ (on some set~$U$).
\end{prop}
\begin{proof}
$\id_{\mathcal{B}}\circ\id_{\mathcal{A}} =
(\id_{\mathcal{B}})|_{\mathcal{A}} = (1^{\mathsf{RLD}}_U|_{\mathcal{B}})|_{\mathcal{A}} = 1^{\mathsf{RLD}}_U|_{\mathcal{A}\sqcap\mathcal{B}} =
\id_{\mathcal{A}\sqcap\mathcal{B}}$.
\end{proof}
\begin{thm}
$f|_{\uparrow\{\alpha\}}=\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\im(f|_{\uparrow\{\alpha\}})$
for every reloid $f$ and $\alpha\in\Src f$.\end{thm}
\begin{proof}
First,
\begin{align*}
\im(f|_{\uparrow \{\alpha\}}) & =\\
\bigsqcap^{\mathsf{RLD}}\rsupfun{\im}\up(f|_{\uparrow \{\alpha\}}) & =\\
\bigsqcap^{\mathsf{RLD}}\rsupfun{\im}\up(f\sqcap(\uparrow^{\Src f}\{\alpha\}\times\top^{\mathscr{F}(\Dst f)})) & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{\im(F\cap(\{\alpha\}\times\top^{\mathscr{T}(\Dst f)}))}{F\in\up f} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{\im(F|_{\uparrow \{\alpha\}})}{F\in\up f}.
\end{align*}
Taking this into account we have:
\begin{align*}
\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\im(f|_{\uparrow \{\alpha\}}) & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{\uparrow^{\Src f}\{\alpha\}\times K}{K\in\im(f|_{\uparrow \{\alpha\}})} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{\uparrow^{\Src f}\{\alpha\}\times\im(F|_{\uparrow \{\alpha\}})}{F\in\up f} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{F|_{\uparrow \{\alpha\}}}{F\in\up f} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{F\sqcap(\uparrow^{\Src f}\{\alpha\}\times\top^{\mathscr{T}(\Dst f)})}{F\in\up f} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond F{F\in\up f}\sqcap\uparrow^{\mathsf{RLD}}(\uparrow^{\Src f}\{\alpha\}\times\top^{\mathscr{T}(\Dst f)}) & =\\
f\sqcap\uparrow^{\mathsf{RLD}}(\uparrow^{\Src f}\{\alpha\}\times\top^{\mathscr{T}(\Dst f)}) & =\\
f|_{\uparrow \{\alpha\}}.
\end{align*}
\end{proof}
\begin{lem}
$\mylambda{\mathcal{B}}{\mathscr{F}(B)}{\top^{\mathscr{F}}\times^{\mathsf{RLD}}\mathcal{B}}$
is an upper adjoint of $\mylambda f{\mathsf{RLD}(A,B)}{\im f}$ (for
every sets $A$, $B$).\end{lem}
\begin{proof}
We need to prove $\im f\sqsubseteq\mathcal{B}\Leftrightarrow f\sqsubseteq\top^{\mathscr{F}}\times^{\mathsf{RLD}}\mathcal{B}$
what is obvious.\end{proof}
\begin{cor}
\label{rld-dom-join}Image and domain of reloids preserve joins.\end{cor}
\begin{proof}
By properties of Galois connections and duality.
\end{proof}
\section{Categories of reloids}
I will define two categories, the \emph{category of reloids} and the
\emph{category of reloid triples}.
\index{category!of reloids}The \emph{category of reloids} is defined
as follows:
\begin{itemize}
\item Objects are small sets.
\item The set of morphisms from a set $A$ to a set $B$ is $\mathsf{RLD}(A,B)$.
\item The composition is the composition of reloids.
\item Identity morphism for a set is the identity reloid for that set.
\end{itemize}
To show it is really a category is trivial.
\index{category!of reloid triples}The \emph{category of reloid triples}
is defined as follows:
\begin{itemize}
\item Objects are small sets.
\item The morphisms from a filter $\mathcal{A}$ to a filter $\mathcal{B}$
are triples $(\mathcal{A},\mathcal{B},f)$ where $f\in\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{B}))$
and $\dom f\sqsubseteq\mathcal{A}$, $\im f\sqsubseteq\mathcal{B}$.
\item The composition is defined by the formula $(\mathcal{B},\mathcal{C},g)\circ(\mathcal{A},\mathcal{B},f)=(\mathcal{A},\mathcal{C},g\circ f)$.
\item Identity morphism for a filter $\mathcal{A}$ is $\id_{\mathcal{A}}^{\mathsf{\mathsf{RLD}}}$.
\end{itemize}
To prove that it is really a category is trivial.
\begin{prop}
$\uparrow^{\mathsf{RLD}}$ is a functor from $\mathbf{Rel}$ to $\mathsf{RLD}$.\end{prop}
\begin{proof}
$\uparrow^{\mathsf{RLD}}(g\circ f)=\uparrow^{\mathsf{RLD}}g\circ\uparrow^{\mathsf{RLD}}f$
was proved above. $\uparrow^{\mathsf{RLD}}1_{A}^{\mathbf{Rel}}=1_{A}^{\mathsf{RLD}}$
is by definition.
\end{proof}
\section{Monovalued and injective reloids}
\index{reloid!monovalued}\index{monovalued!reloid}Following the
idea of definition of monovalued morphism let's call \emph{monovalued}
such a reloid $f$ that $f\circ f^{-1}\sqsubseteq\id_{\im f}^{\mathsf{RLD}}$.
\index{reloid!injective}\index{injective!reloid}Similarly, I will
call a reloid \emph{injective} when $f^{-1}\circ f\sqsubseteq\id_{\dom f}^{\mathsf{RLD}}$.
\begin{obvious}
A reloid $f$ is
\begin{itemize}
\item monovalued iff $f\circ f^{-1}\sqsubseteq1_{\Dst f}^{\mathsf{RLD}}$;
\item injective iff $f^{-1}\circ f\sqsubseteq1_{\Src f}^{\mathsf{RLD}}$.
\end{itemize}
\end{obvious}
In other words, a reloid is monovalued (injective) when it is a monovalued
(injective) morphism of the category of reloids.
Monovaluedness is dual of injectivity.
\begin{obvious}
~
\begin{enumerate}
\item A morphism $(\mathcal{A},\mathcal{B},f)$ of the category of reloid
triples is monovalued iff the reloid $f$ is monovalued.
\item A morphism $(\mathcal{A},\mathcal{B},f)$ of the category of reloid
triples is injective iff the reloid $f$ is injective.
\end{enumerate}
\end{obvious}
\begin{thm}
~
\begin{enumerate}
\item \label{rld-mon-gr}A reloid $f$ is a monovalued iff there exists
a $\mathbf{Set}$-morphism (monovalued $\mathbf{Rel}$-morphism) $F\in\up f$.
\item \label{rld-mon-inj}A reloid $f$ is a injective iff there exists
an injective $\mathbf{Rel}$-morphism $F\in\up f$.
\item \label{rld-mon-both}A reloid $f$ is a both monovalued and injective
iff there exists an injection (a monovalued and injective $\mathbf{Rel}$-morphism
= injective $\mathbf{Set}$-morphism) $F\in\up f$.
\end{enumerate}
\end{thm}
\begin{proof}
The reverse implications are obvious. Let's prove the direct implications:
\begin{widedisorder}
\item [{\ref{rld-mon-gr}}] Let $f$ be a monovalued reloid. Then $f\circ f^{-1}\sqsubseteq 1_{\Dst f}^{\mathsf{RLD}}$,
that is
\[\bigsqcap^{\mathsf{RLD}}\setcond{F\circ F^{-1}}{F\in\up f}\sqsubseteq 1_{\Dst f}^{\mathsf{RLD}}.\]
It's simple to show that $\setcond{F\circ F^{-1}}{F\in\up f}$ is
a filter base. Consequently there exists $F\in\up f$ such that $F\circ F^{-1}\sqsubseteq 1_{\Dst f}^{\mathsf{RLD}}$
that is $F$ is monovalued.
\item [{\ref{rld-mon-inj}}] Similar.
\item [{\ref{rld-mon-both}}] Let $f$ be a both monovalued and injective
reloid. Then by proved above there exist $F,G\in\up f$ such that
$F$ is monovalued and $G$ is injective. Thus $F\sqcap G\in\up f$
is both monovalued and injective.
\end{widedisorder}
\end{proof}
\begin{conjecture}
A reloid $f$ is monovalued iff
\[
\forall g\in\mathsf{\mathsf{RLD}}(\Src f,\Dst f):(g\sqsubseteq f\Rightarrow\exists\mathcal{A}\in\mathscr{F}(\Src f):g=f|_{\mathcal{A}}).
\]
\end{conjecture}
\section{Complete reloids and completion of reloids}
\begin{defn}
\index{reloid!complete}A \emph{complete} reloid is a reloid representable
as a join of reloidal products $\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b$
where $\alpha\in A$ and $b$ is an ultrafilter on $B$ for some sets
$A$ and $B$.
\end{defn}
\begin{defn}
\index{reloid!co-complete}A \emph{co-complete} reloid is a reloid
representable as a join of reloidal products $a\times^{\mathsf{RLD}}\uparrow^{A}\{\beta\}$
where $\beta\in B$ and $a$ is an ultrafilter on $A$ for some sets
$A$ and $B$.
\end{defn}
I will denote the sets of complete and co-complete reloids from a set~$A$ to a set~$B$ as
$\mathsf{ComplRLD}(A,B)$ and $\mathsf{CoComplRLD}(A,B)$ correspondingly and
set of all (co-)complete reloids (for small sets)
as $\mathsf{ComplRLD}$ and $\mathsf{CoComplRLD}$.
\begin{obvious}
Complete and co-complete are dual.\end{obvious}
\begin{thm}
\label{complrld-rep}$G\mapsto\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}$
is an order isomorphism from the set of functions $G\in\mathscr{F}(B)^{A}$
to the set $\mathsf{ComplRLD}(A,B)$.
The inverse isomorphism is described by the formula $G(\alpha)=\im(f|_{\uparrow \{\alpha\}})$
where $f$ is a complete reloid.\end{thm}
\begin{proof}
$\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}$
is complete because $G(\alpha)=\bigsqcup\atoms G(\alpha)$ and thus
\[
\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}=\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b}{\alpha\in A,b\in\atoms G(\alpha)}
\]
is complete. So $G\mapsto\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}$
is a function from $G\in\mathscr{F}(B)^{A}$ to $\mathsf{ComplRLD}(A,B)$.
Let $f$ be complete. Then take
\[
G(\alpha)=\bigsqcup\setcond{b\in\atoms^{\mathscr{F}(\Dst f)}}{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b\sqsubseteq f}
\]
and we have $f=\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}$
obviously. So $G\mapsto\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}$
is surjection onto $\mathsf{ComplRLD}(A,B)$.
Let now prove that it is an injection:
Let
\[
f=\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}F(\alpha)}{\alpha\in A}=\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}
\]
for some $F,G\in\mathscr{F}(B)^{A}$. We need to prove $F=G$. Let
$\beta\in\Src f$.
\begin{align*}
f\sqcap(\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(B)}) & =\text{ (theorem~\ref{b-f-back-distr})}\\
\bigsqcup\setcond{(\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}F(\alpha))\sqcap(\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(B)})}{\alpha\in A} & =\\
\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}F(\beta).
\end{align*}
Similarly $f\sqcap(\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(B)})=\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}G(\beta)$.
Thus $\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}F(\beta)=\uparrow^{A}\{\beta\}\times^{\mathsf{RLD}}G(\beta)$
and so $F(\beta)=G(\beta)$.
We have proved that it is a bijection. To show that it is monotone
is trivial.
Denote $f=\bigsqcup\setcond{\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}$.
Then
\begin{multline*}
\im(f|_{\uparrow \{\alpha'\}})=\im(f\sqcap(\uparrow^{A}\{\alpha'\}\times\top^{\mathscr{T}(B)}))= \\
\text{(because \ensuremath{\uparrow^{A}\{\alpha'\}\times\top^{\mathscr{T}(B)}} is principal)}=\\
\im\bigsqcup\setcond{(\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha))\sqcap(\uparrow^{A}\{\alpha'\}\times\top^{\mathscr{T}(B)})}{\alpha\in\Src f}=\\
\im(\uparrow^{A}\{\alpha'\}\times^{\mathsf{RLD}}G(\alpha'))=G(\alpha').
\end{multline*}
\end{proof}
\begin{cor}
$G\mapsto\bigsqcup\setcond{G(\alpha)\times^{\mathsf{RLD}}\uparrow^{A}\{\alpha\}}{\alpha\in A}$
is an order isomorphism from the set of functions $G\in\mathscr{F}(B)^{A}$
to the set $\mathsf{CoComplRLD}(A,B)$.
The inverse isomorphism is described by the formula $G(\alpha)=\im(f^{-1}|_{\uparrow\{\alpha\}})$
where $f$ is a co-complete reloid.
\end{cor}
\begin{cor}
$\mathsf{ComplRLD}(A,B)$ and $\mathsf{ComplFCD}(A,B)$ are a co-frames.\end{cor}
\begin{obvious}
Complete and co-complete reloids are convex.
\end{obvious}
\begin{obvious}
Principal reloids are complete and co-complete.
\end{obvious}
\begin{obvious}
Join (on the lattice of reloids) of complete reloids is complete.\end{obvious}
\begin{thm}
A reloid which is both complete and co-complete is principal.\end{thm}
\begin{proof}
Let $f$ be a complete and co-complete reloid. We have
\[
f=\bigsqcup\setcond{\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in\Src f}\quad\text{and}\quad f=\bigsqcup\setcond{H(\beta)\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\beta\}}{\beta\in\Dst f}
\]
for some functions $G:\Src f\rightarrow\mathscr{F}(\Dst f)$ and $H:\Dst f\rightarrow\mathscr{F}(\Src f)$.
For every $\alpha\in\Src f$ we have
\begin{align*}
G(\alpha) & =\\
\im f|_{\uparrow \{\alpha\}} & =\\
\im(f\sqcap(\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})) & =\text{ (*)}\\
\im\bigsqcup\setcond{(H(\beta)\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\beta\})\sqcap(\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})}{\beta\in\Dst f} & =\\
\im\bigsqcup\setcond{(H(\beta)\sqcap\uparrow^{\Src f}\{\alpha\})\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\beta\}}{\beta\in\Dst f} & =\\
\im\bigsqcup\setcond{\left(\begin{cases}
\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\beta\} & \text{if }\ensuremath{H(\beta)\nasymp\uparrow^{\Src f}\{\alpha\}}\\
\bot^{\mathsf{RLD}(\Src f,\Dst f)} & \text{if }\ensuremath{H(\beta)\asymp\uparrow^{\Src f}\{\alpha\}}
\end{cases}\right)}{\beta\in\Dst f} & =\\
\im\bigsqcup\setcond{\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\beta\}}{\beta\in\Dst f,H(\beta)\nasymp\uparrow^{\Src f}\{\alpha\}} & =\\
\im\bigsqcup\setcond{\uparrow^{\mathsf{RLD}(\Src f,\Dst f)}\{(\alpha,\beta)\}}{\beta\in\Dst f,H(\beta)\nasymp\uparrow^{\Src f}\{\alpha\}} & =\\
\bigsqcup\setcond{\uparrow^{\Dst f}\{\beta\}}{\beta\in\Dst f,H(\beta)\nasymp\uparrow^{\Src f}\{\alpha\}}
\end{align*}
{*} theorem~\ref{b-f-back-distr} was used.
Thus $G(\alpha)$ is a principal filter that is $G(\alpha)=\uparrow^{\Dst f}g(\alpha)$
for some $g:\Src f\rightarrow\Dst f$; $\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)=\uparrow^{\mathsf{RLD}(\Src f,\Dst f)}(\{\alpha\}\times g(\alpha))$;
$f$ is principal as a join of principal reloids.\end{proof}
\begin{defn}
\index{completion!of reloid}\index{co-completion!of reloid}\emph{Completion}
and \emph{co-completion} of a reloid $f\in\mathsf{RLD}(A,B)$ are
defined by the formulas:
\[
\Compl f=\Cor^{\mathsf{ComplRLD}(A,B)}f;\quad\CoCompl f=\Cor^{\mathsf{CoComplRLD}(A,B)}f.
\]
\end{defn}
\begin{thm}
Atoms of the lattice $\mathsf{ComplRLD}(A,B)$ are exactly reloidal
products of the form $\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b$
where $\alpha\in A$ and $b$ is an ultrafilter on $B$.\end{thm}
\begin{proof}
First, it's easy to see that $\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b$
are elements of $\mathsf{ComplRLD}(A,B)$. Also $\bot^{\mathsf{RLD}(A,B)}$
is an element of $\mathsf{ComplRLD}(A,B)$.
$\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b$ are atoms of $\mathsf{ComplRLD}(A,B)$
because they are atoms of $\mathsf{RLD}(A,B)$.
It remains to prove that if $f$ is an atom of $\mathsf{ComplRLD}(A,B)$
then $f=\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b$ for some $\alpha\in A$
and an ultrafilter $b$ on $B$.
Suppose $f$ is a non-empty complete reloid. Then $\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b\sqsubseteq f$
for some $\alpha\in A$ and an ultrafilter $b$ on $B$. If $f$ is
an atom then $f=\uparrow^{A}\{\alpha\}\times^{\mathsf{RLD}}b$.\end{proof}
\begin{obvious}
$\mathsf{ComplRLD}(A,B)$ is an atomistic lattice.\end{obvious}
\begin{prop}
$\Compl f=\bigsqcup\setcond{f|_{\uparrow \{\alpha\}}}{\alpha\in\Src f}$
for every reloid~$f$.\end{prop}
\begin{proof}
Let's denote $R$ the right part of the equality to be proven.
That $R$ is a complete reloid follows from the equality
\[
f|_{\uparrow \{\alpha\}}=\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}\im(f|_{\uparrow \{\alpha\}}).
\]
Obviously, $R\sqsubseteq f$.
The only thing left to prove is that $g\sqsubseteq R$ for every complete
reloid $g$ such that $g\sqsubseteq f$.
Really let $g$ be a complete reloid such that $g\sqsubseteq f$.
Then
\[
g=\bigsqcup\setcond{\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in\Src f}
\]
for some function $G:\Src f\rightarrow\mathscr{F}(\Dst f)$.
We have $\uparrow^{\Src f}\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)=g|_{\uparrow^{\Src f}\{\alpha\}}\sqsubseteq f|_{\uparrow \{\alpha\}}$.
Thus $g\sqsubseteq R$.\end{proof}
\begin{conjecture}\label{compl-rld-intrs}
$\Compl f\sqcap\Compl g=\Compl(f\sqcap g)$ for every $f,g\in\mathsf{RLD}(A,B)$.\end{conjecture}
\begin{prop}
Conjecture~\ref{compl-rld-intrs} is equivalent to the statement that meet of every two complete reloids is a complete reloid.
\end{prop}
\begin{proof}
Let conjecture~\ref{compl-rld-intrs} holds. Then for complete funcoids $f$ and $g$ we have $f \sqcap g =
\Compl (f \sqcap g)$ and thus $f \sqcap g$ is complete.
Let meet of every two complete reloid is complete. Then $\Compl f \sqcap
\Compl g$ is complete and thus it is greatest complete reloid which is
less $\Compl f$ and less $\Compl g$ what is the same as greatest
complete reloid which is less than $f$ and $g$ that is $\Compl (f \sqcap
g)$.
\end{proof}
\begin{thm}
$\Compl\bigsqcup R=\bigsqcup\rsupfun{\Compl}R$ for every set $R\in\subsets\mathsf{RLD}(A,B)$
for every sets $A$, $B$.\end{thm}
\begin{proof}
~
\begin{align*}
\Compl\bigsqcup R & =\\
\bigsqcup\setcond{\left(\bigsqcup R\right)|_{\uparrow^{A}\{\alpha\}}}{\alpha\in A} & =\text{ (theorem~\ref{b-f-back-distr})}\\
\bigsqcup\setcond{\bigsqcup\setcond{f|_{\uparrow \{\alpha\}}}{\alpha\in A}}{f\in R} & =\\
\bigsqcup\rsupfun{\Compl}R.
\end{align*}
\end{proof}
\begin{lem}
Completion of a co-complete reloid is principal.\end{lem}
\begin{proof}
Let $f$ be a co-complete reloid. Then there is a function $F:\Dst f\rightarrow\mathscr{F}(\Src f)$
such that
\[
f=\bigsqcup\setcond{F(\alpha)\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\alpha\}}{\alpha\in\Dst f}.
\]
So
\begin{align*}
\Compl f & =\\
\bigsqcup\setcond{\left(\bigsqcup\setcond{F(\alpha)\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\alpha\}}{\alpha\in\Dst f}\right)|_{\uparrow\{\beta\}}}{\beta\in\Src f} & =\\
\bigsqcup\setcond{\left(\bigsqcup\setcond{F(\alpha)\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\alpha\}}{\alpha\in\Dst f}\right)\sqcap(\uparrow^{\Src f}\{\beta\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})}{\beta\in\Src f} & =\text{ (*)}\\
\bigsqcup\setcond{\bigsqcup\setcond{(F(\alpha)\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\alpha\})\sqcap(\uparrow^{\Src f}\{\beta\}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})}{\alpha\in\Dst f}}{\beta\in\Src f} & =\\
\bigsqcup\setcond{\bigsqcup\setcond{\uparrow^{\Src f}\{\beta\}\times^{\mathsf{RLD}}\uparrow^{\Dst f}\{\alpha\}}{\alpha\in\Dst f}}{\beta\in\Src f,\uparrow^{\Src f}\{\beta\}\sqsubseteq F(\alpha)}
\end{align*}
{*} theorem~\ref{b-f-back-distr}.
Thus $\Compl f$ is principal.\end{proof}
\begin{thm}
$\Compl\CoCompl f=\CoCompl\Compl f=\Cor f$ for every reloid~$f$.\end{thm}
\begin{proof}
We will prove only $\Compl\CoCompl f=\Cor f$. The rest follows from
symmetry.
From the lemma $\Compl\CoCompl f$ is principal. It is obvious $\Compl\CoCompl f\sqsubseteq f$.
So to finish the proof we need to show only that for every principal
reloid $F\sqsubseteq f$ we have $F\sqsubseteq\Compl\CoCompl f$.
Really, obviously $F\sqsubseteq\CoCompl f$ and thus $F=\Compl F\sqsubseteq\Compl\CoCompl f$.\end{proof}
\begin{conjecture}\label{rld-compl-mcompl}
If $f$ is a complete reloid, then it is metacomplete.
\end{conjecture}
\begin{conjecture}
If $f$ is a metacomplete reloid, then it is complete.
\end{conjecture}
\begin{conjecture}
$\Compl f=f\psetminus(\Omega^{\Src f}\times^{\mathsf{RLD}}\top^{\mathscr{F}(\Dst f)})$
for every reloid~$f$.
\end{conjecture}
By analogy with similar properties of funcoids described above:
\begin{prop}
For composable reloids $f$ and $g$ it holds
\begin{enumerate}
\item $\Compl(g\circ f)\sqsupseteq(\Compl g)\circ(\Compl f)$
\item $\CoCompl(g\circ f)\sqsupseteq(\CoCompl g)\circ(\CoCompl f)$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{enumerate}
\item $(\Compl g)\circ(\Compl f)\sqsubseteq\Compl((\Compl g)\circ(\Compl f))\sqsubseteq\Compl(g\circ f)$.
\item By duality.
\end{enumerate}
\end{proof}
\begin{conjecture}
For composable reloids $f$ and $g$ it holds
\begin{enumerate}
\item $\Compl(g\circ f)=(\Compl g)\circ f$ if $f$ is a co-complete reloid;
\item $\CoCompl(f\circ g)=f\circ\CoCompl g$ if $f$ is a complete reloid;
\item $\CoCompl((\Compl g)\circ f)=\Compl(g\circ(\CoCompl f))=(\Compl g)\circ(\CoCompl f)$;
\item $\Compl(g\circ(\Compl f))=\Compl(g\circ f)$;
\item $\CoCompl((\CoCompl g)\circ f)=\CoCompl(g\circ f)$.
\end{enumerate}
\end{conjecture}
\section{What uniform spaces are}
\begin{prop}
\index{uniformity}\index{space!uniform}Uniform spaces are exactly
reflexive, symmetric, transitive endoreloids.\end{prop}
\begin{proof}
Easy to prove using theorem~\ref{rld-prod-ff}.\end{proof}