-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-rels-are-fcd.tex
86 lines (74 loc) · 3 KB
/
chap-rels-are-fcd.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
\chapter{Relationships are pointfree funcoids}
\begin{thm}
$(\tofcd, \torldin )$ are components
of a complete pointfree funcoid.
\end{thm}
\begin{proof}
For every ultrafilters $x$ and $y$ we have $x
\mathrel{[\tofcd (f \sqcap \torldin
g)]} y \Leftrightarrow x \times^{\mathsf{RLD}} y \nasymp f \sqcap
\torldin g \Leftrightarrow x
\times^{\mathsf{RLD}} y \sqsubseteq
\torldin g \land x \times^{\mathsf{RLD}} y
\nasymp f \sqcap \torldin g \Leftrightarrow x \times^{\mathsf{FCD}} y \in
\atoms g : x \times^{\mathsf{RLD}} y \nasymp f \sqcap \torldin g
\Leftrightarrow
x \times^{\mathsf{FCD}} y \in
\atoms g : x \times^{\mathsf{RLD}} y \nasymp f
\Leftrightarrow
x \times^{\mathsf{FCD}} y \in \atoms g \land x
\times^{\mathsf{FCD}} y \sqsubseteq \tofcd f
\Leftrightarrow x \mathrel{[g \sqcap \tofcd f]} y$.
Thus $\tofcd (f \sqcap \torldin g) =
g \sqcap \tofcd f$. Consequently $f \sqcap
\torldin g = \bot \Leftrightarrow g \sqcap
\tofcd f = \bot$ that is $g \nasymp \tofcd f
\Leftrightarrow f \nasymp \torldin g$.
It is complete by theorem~\bookref{rels-dist}.
\end{proof}
We will also prove in another way that $\tofcd$,
$\torldin $ are components of pointfree funcoids:
\begin{thm}
$\torldin $ is a component of a pointfree funcoid
(between filters on boolean lattices).
\end{thm}
\begin{proof}
Consider the pointfree funcoid $\mathscr{R}$ defined by the formula
$\left\langle \mathscr{R} \right\rangle^{\ast} F =
\torldin F$ for binary relations $F$ (obviously it
does exists). Then $\left\langle \mathscr{R} \right\rangle f = \left\langle
\mathscr{R} \right\rangle \bigsqcap^{\mathsf{FCD}} \up^{\Gamma}
f = \bigsqcap^{\mathsf{RLD}}_{F \in \up^{\Gamma} f}
\left\langle \mathscr{R} \right\rangle^{\ast} F =
\bigsqcap^{\mathsf{RLD}}_{F \in \up^{\Gamma} f}
\torldin F = \torldin
\bigsqcap^{\mathsf{FCD}}_{F \in \up^{\Gamma} f} F =
\torldin f$.
\end{proof}
\begin{thm}
$\tofcd$ is a component of a complete pointfree funcoid
(between filters on boolean lattices).
\end{thm}
\begin{proof}
Consider the pointfree funcoid $\mathscr{Q}$ defined by the formula
$\left\langle \mathscr{Q} \right\rangle^{\ast} F = \tofcd F$
for binary relations $F$ (obviously it does exists). Then $\left\langle
\mathscr{Q} \right\rangle f = \left\langle \mathscr{Q} \right\rangle
\bigsqcap^{\mathsf{RLD}} \up f = \text{(because $\up f$
is a filter base)} = \bigsqcap^{\mathsf{FCD}}_{F \in \up f}
\left\langle \mathscr{Q} \right\rangle^{\ast} F =
\bigsqcap^{\mathsf{FCD}}_{F \in \up f} \tofcd F
= \bigsqcap^{\mathsf{FCD}}_{F \in \up f} F =
\bigsqcap^{\mathsf{FCD}} \up f = \tofcd f$.
\end{proof}
\begin{prop}
$\tofcd \bigsqcap S = \bigsqcap_{f\in S}\tofcd f$ if~$S$ is
a filter base of reloids (with the same sources and destinations).
\end{prop}
\begin{proof}
Theorem~\bookref{supfun-genbase}.
\end{proof}
\begin{conjecture}
$\torldin \bigsqcap S = \bigsqcap_{f\in S}\torldin f$ if~$S$ is
a filter base of funcoids (with the same sources and destinations).
\end{conjecture}