-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-tgroups.tex
526 lines (417 loc) · 22.5 KB
/
chap-tgroups.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
\chapter{Funcoidal groups}
\begin{rem}
\fxnote{Move this into the book.}
If $\mu$ and $\nu$ are cocomplete endofuncoids, then we can describe $f \in
\continuous (\mu,\nu)$ without using filters by the formulas:
\begin{enumerate}
\item $\rsupfun{f} \langle \mu \rangle^{\ast} X \sqsubseteq
\supfun{\nu}^{\ast} \rsupfun{f} X$ (for every set $X$
in $\subsets \Ob \mu$)
\item $\langle \mu \rangle^{\ast} X \sqsubseteq \langle f^{- 1}
\rangle^{\ast} \supfun{\nu}^{\ast} \rsupfun{f} X$ (for
every set $X$ in $\subsets \Ob \mu$)
\item $\rsupfun{f} \langle \mu \rangle^{\ast} \langle f^{- 1}
\rangle^{\ast} Y \sqsubseteq \supfun{\nu}^{\ast} Y$ (for every set
$Y$ in $\subsets \Ob \nu$)
\end{enumerate}
\end{rem}
Funcoidal groups are modeled after topological groups (see Wikipedia)
and are their generalization.
\begin{defn}
\emph{Funcoidal group} is a group $G$ together with endofuncoid $\mu$ on
$\Ob G$ such that
\begin{enumerate}
\item $(y \cdot) \in \mathrm{C} (\mu ; \mu)$ for every $y \in G$;
\item $(\cdot x) \in \mathrm{C} (\mu ; \mu)$ for every $x \in G$;
\item $(x \mapsto x^{- 1}) \in \mathrm{C} (\mu ; \mu)$ for every $x \in
G$.
\end{enumerate}
\end{defn}
\begin{prop}
$t \mapsto y \cdot t \cdot x$ and $t \mapsto y \cdot t^{- 1} \cdot x$ are
continuous functions.
\end{prop}
\begin{proof}
As composition of continuous functions.
\end{proof}
\begin{obvious}
Composition of functions of the forms $t \mapsto y \cdot t \cdot x$ and $t
\mapsto y \cdot t^{- 1} \cdot x$ are also a function of one of these
forms.
\end{obvious}
What is the purpose of the following (yet unproved) proposition? I don't know, but it looks curious.
\begin{prop}
Let $E$ be a composition of functions of a form
$\rsupfun{\mu}$, $\langle y \cdot
\rangle^{\ast}$, $\langle \cdot x \rangle^{\ast}$, $\langle^{- 1}
\rangle^{\ast}$ (where $x$ and $y$ vary arbitrarily)
such that $\mu$ is met in the composition at least once.
Let also either $\mu = \mu \circ \mu$ or $\mu$ is met exactly once in the product.
There are such elements $x_0$, $y_0$ that either
\begin{enumerate}
\item $(t \mapsto y_0 \cdot t \cdot x_0) \circ \langle \mu \rangle
\sqsubseteq E \sqsubseteq \langle \mu \rangle \circ (t \mapsto y_0 \cdot t
\cdot x_0)$;
\item $(t \mapsto y_0 \cdot t^{- 1} \cdot x_0) \circ \langle \mu \rangle
\sqsubseteq E \sqsubseteq \langle \mu \rangle \circ (t \mapsto y_0 \cdot
t^{- 1} \cdot x_0)$.
\end{enumerate}
\end{prop}
\begin{proof}
Using continuity a few times we prove that $E \sqsubseteq \langle \mu
\rangle^{\ast} \circ \ldots \circ \langle \mu \rangle^{\ast} \circ f_n \circ
\ldots \circ f_1$ where $f_i$ are functions of the forms $t \mapsto y \cdot
t \cdot x$ or $t \mapsto y \cdot t^{- 1} \cdot x$ for $n \in \mathbb{N}$.
But $\langle \mu \rangle^{\ast} \circ \ldots \circ \langle \mu
\rangle^{\ast} = \langle \mu \rangle^{\ast}$ by conditions and $f_n \circ
\ldots \circ f_1$ is of the form $t \mapsto y \cdot t \cdot x$ or $t \mapsto
y \cdot t^{- 1} \cdot x$ by above proposition. $E \sqsubseteq \langle \mu
\rangle \circ (t \mapsto y_0 \cdot t \cdot x_0)$ or $E \sqsubseteq \langle
\mu \rangle \circ (t \mapsto y_0 \cdot t^{- 1} \cdot x_0)$
The second inequalty is similar. Note that $x_0$ and $y_0$ are the same for
the first and for the second item.
\end{proof}
$(G, \mu)$ vs $(G, \mu^{-1})$ are they isomorphic?
\fxnote{We can also define reloidal groups.}
\section{On ``Each regular paratopological group is completely regular'' article}
In this chapter I attempt to rewrite the paper~\cite{2014arXiv1410.1504B} in more general setting of funcoids and reloids.
I attempt to construct a ``royal road'' to finding proofs of statements of this paper and similar ones, what is
important because we lose 60 years waiting for any proof.
\subsection{Definition of normality}
By definition (slightly generalizing the special case if $\mu$ is a
quasi-uniform space from~\cite{2014arXiv1410.1504B})
a pair of an endo-reloid~$\mu$ and a complete funcoid~$\nu$ (playing role of a generalization of a topological space)
on a set $U$ is \emph{normal} when
\[ \rsupfun{\nu^{-1}} A \sqsubseteq \rsupfun{
{\nu^{-1}}^{\circ}} \rsupfun{\nu^{-1}} \rsupfun{F} A \] for every entourage $F \in
\up \mu$ of $\mu$ and every set $A \subseteq U$.
Note that this is \emph{not} the same as customary definition of normal topological spaces.
\begin{thm}
An endoreloid $\mu$ is normal on endoreloid~$\nu$ iff
\[ \nu \circ \nu^{-1} \sqsubseteq
\nu^{-1} \circ (\mathsf{FCD}) \mu. \]
\end{thm}
\begin{proof}
Equivalently transforming the criterion of normality (which should hold for
all $F \in \up \mu$) using proposition~\ref{get-rid-interior}:
$\rsupfun{\nu}
\rsupfun{\nu^{-1}} A \sqsubseteq
\rsupfun{\nu^{-1}} \rsupfun{F} A$.
Also note
$\bigsqcap^{\mathscr{F}}_{F \in \up \mu} \rsupfun{ \nu^{-1}
} \rsupfun{F} A = \text{(because funcoids preserve
filtered meets)} = \rsupfun{ \nu^{-1}
} \bigsqcap^{\mathscr{F}}_{F \in \up \mu} \rsupfun{F} A =
\rsupfun{ \nu^{-1} }
\rsupfun{ (\mathsf{FCD}) \mu } A$.
Thus the above is equivalent to
$\rsupfun{\nu}
\rsupfun{\nu^{-1}} A \sqsubseteq
\rsupfun{ \nu^{-1} }
\rsupfun{ (\mathsf{FCD}) \mu } A$.
And this is in turn equivalent to
\[ \nu \circ \nu^{-1} \sqsubseteq
\nu^{-1} \circ (\mathsf{FCD}) \mu. \]
\end{proof}
\begin{defn}
An endofuncoid~$\mu$ is \emph{normal} on endofuncoid~$\nu$ when $\nu \circ \nu^{-1} \sqsubseteq \nu^{-1} \circ \mu$.
\fxwarning{No need for $\nu$ to be endomorphism.}
\end{defn}
\begin{obvious}\label{norm-fcd-rld}
~
\begin{enumerate}
\item Endoreloid~$\mu$ is normal on endofuncoid~$\nu$ iff endofuncoid~$\tofcd\mu$ is normal on endofuncoid~$\nu$.
\item Endofuncoid~$\mu$ is normal on endoreloid~$\nu$ iff endofuncoid~$\torldin\mu$ is normal on endofuncoid~$\nu$.
\end{enumerate}
\end{obvious}
\begin{cor}
If $\nu$ is a symmetric endofuncoid and $\mu\sqsupseteq \nu^{-1}$, then it is normal.
\end{cor}
\begin{cor} (generalization of proposition~1 in~\cite{2014arXiv1410.1504B})
If $\nu$ is a symmetric endofuncoid and $\Compl\mu\sqsupseteq \nu^{-1}$, then it is normal.
\end{cor}
\begin{defn}
A funcoid~$\nu$ is \emph{normally reloidazable} iff there exist a reloid~$\mu$ such that
$(\mu,\nu)$ is normal and $\nu=\Compl\tofcd\mu$.
\end{defn}
\begin{defn}
A funcoid~$\nu$ is \emph{normally quasi-uniformizable} iff there exist a quasi-uniform space (=~reflexive and transitive reloid)~$\mu$ such that
$(\mu,\nu)$ is normal and $\nu=\Compl\tofcd\mu$.
\end{defn}
\begin{prop}
A funcoid~$\nu$ is normally reloidazable iff there exist a funcoid~$\mu$ such that
$\mu$ is normal on~$\nu$ and $\nu=\Compl\mu$.
\end{prop}
\begin{prop}
A funcoid~$\nu$ is normally quasi-uniformizable iff there exist a quasi-proximity space (=~reflexive and transitive funcoid)~$\mu$ such that
$\mu$ is normal on~$\nu$ and $\nu=\Compl\mu$.
\end{prop}
\begin{proof}
Obvious~\ref{norm-fcd-rld} and the fact that~$\tofcd$ is an isomorphism between reflexive and transitive funcoids
and reflexive and transitive reloids.
\end{proof}
In other words, it is normally reloidazable or normally quasi-uniformizable when
\[ (\Compl\mu)\circ(\Compl\mu)^{-1}\sqsubseteq(\Compl\mu)^{-1}\circ\mu \]
for suitable~$\mu$.
\subsection{Urysohn's lemma and friends}
For a detailed proof of Urysohn's lemma see also:\\
\url{http://homepage.math.uiowa.edu/~jsimon/COURSES/M132Fall07/UrysohnLemma_v5.pdf}\\
\url{https://proofwiki.org/wiki/Urysohn's_Lemma}\\
\url{http://planetmath.org/proofofurysohnslemma}
\url{https://en.wikipedia.org/wiki/Proximity_space} says that
``The resulting topology is always completely regular. This can be proven by imitating the usual proofs of Urysohn's lemma, using the last property of proximal neighborhoods to create the infinite increasing chain used in proving the lemma.''
Below follows an alternative proof of Urysohn lemma.
\emph{The proof was based on a conjecture proved false, see example~\bookref{fcd-comp-ent}!}
\begin{lem}
If $\supfun{\mu} \mathcal{A} \asymp \mathcal{B}$ for a complete
funcoid $\mu$ and $\mathcal{A}$, $\mathcal{B}$ are filters on relevant
sets, then there exists $U \in \up \mu$ such that $\supfun{U} \mathcal{A} \asymp \mathcal{B}$.
\end{lem}
\begin{proof}
Prove that $\setcond{ \supfun{U} \mathcal{A} }{
U \in \up \mu }$ is a filter base. That it
is nonempty is obvious.
Let $\mathcal{X}, \mathcal{Y} \in \setcond{ \supfun{U} \mathcal{A}
}{ U \in \up \mu }$. Then
$\mathcal{X} = \supfun{U_{\mathcal{X}}} \mathcal{A}$, $Y = \supfun{
U_{\mathcal{Y}}} \supfun{A}$. Because $\mu$ is complete, we have
(proposition~\bookref{up-f-filt}) $U_{\mathcal{X}} \sqcap U_{\mathcal{Y}} \in \up
\mu$. Thus $\mathcal{X}, \mathcal{Y} \sqsupseteq \supfun{
U_{\mathcal{X}} \sqcap U_{\mathcal{Y}} } \mathcal{A} \in \setcond{
\supfun{U} \mathcal{A} }{ U \in \up \mu }$.
Thus $\supfun{\mu} \mathcal{A} \asymp \mathcal{B}
\Leftrightarrow \mathcal{B} \sqcap \supfun{\mu} \mathcal{A} =
\bot \Leftrightarrow \exists U \in \up \mu: \mathcal{B} \sqcap
\supfun{U} \mathcal{A} = \bot \Leftrightarrow \exists U \in \up
\mu: \supfun{U} \mathcal{A} \asymp \mathcal{B}$.
\end{proof}
\begin{cor}\label{disj-mu}
If $\supfun{\mu} \mathcal{A} \asymp \supfun{\mu}
\mathcal{B}$ for a complete funcoid $\mu$ and $\mathcal{A}$,
$\mathcal{B}$ are filters on relevant sets, then there exists $U \in
\up \mu$ such that $\supfun{U} \mathcal{A} \asymp \supfun{U} \mathcal{B}$.
\end{cor}
\begin{proof}
Applying the lemma twice we can obtain $P, Q \in \up \mu$
such that $\supfun{P} \mathcal{A} \asymp \supfun{Q} \mathcal{B}$. But because
$\mu$ is complete, we have $U = P \sqcap Q \in \up \mu$,
while obviously $\supfun{U} \mathcal{A} \asymp \supfun{U} \mathcal{B}$.
\end{proof}
\begin{lem}
(assuming conjecture~\bookref{fcd-comp-ent}) For every $U \in \up \mu$ (where $\mu$ is a $T_4$ topological space) such that
$\neg \left( A \rsuprel{U \circ U^{- 1}} B \right)$ there is $W \in
\up \mu$ such that $U \circ U^{- 1} \sqsupseteq W \circ W^{- 1}
\circ W \circ W^{- 1}$. For it holds $\neg \left( A \rsuprel{W \circ W^{-
1}} B \right)$.
We can assume that $\rsupfun{W}X$ is open for every set~$X$.
\end{lem}
\begin{proof}
$U \circ U^{- 1} \in \up (\mu \circ \mu^{- 1}) \subseteq
\up (\mu \circ \mu^{- 1} \circ \mu \circ
\mu^{- 1})$ (normality used). Thus by the conjecture there exists $W
\in \up \mu$ such that $U \circ U^{- 1} \sqsupseteq W \circ W^{-
1} \circ W \circ W^{- 1}$. $W \circ W^{- 1} \sqsubseteq U \circ U^{- 1}$
thus $\neg \left( A \rsuprel{W \circ W^{- 1}} B \right)$.
To prove that $\rsupfun{W}X$ is open for every set~$X$, replace every $\rsupfun{W}\{x\}$
with an open neighborhood $E\subseteq\rsupfun{W}X$ of $\rsupfun{\mu}\{x\}$
(and note that union of open sets is open).
This new $W$ holds all necessary properties.
\end{proof}
\begin{lem}
(assuming conjecture~\bookref{fcd-comp-ent}) For every $U \in \up \mu$ (where $\mu$ is a $T_4$ topological space) such that
$\neg \left( A \rsuprel{U \circ U^{- 1}} B \right)$ there is $W \in \up\mu$
such that $U \circ U^{- 1} \sqsupseteq \mu^{-1} \circ W \circ W^{-1}\circ W \circ W^{- 1}$.
For it holds $\neg \left( A \rsuprel{W \circ W^{-
1}} B \right)$.
We can assume that $\rsupfun{W}X$ is open for every set~$X$.
\end{lem}
\begin{proof}
Applying the previous lemma twice, we have some open~$W\in\up\mu$ such that
\[ U\circ U^{-1} \sqsupseteq W \circ W^{-1}\circ W \circ W^{- 1} \circ W \circ W^{-1}\circ W \circ W^{- 1} \]
and $\neg \left( A \rsuprel{W \circ W^{-1}} B \right)$.
From this easily follows that \[ U \circ U^{- 1} \sqsupseteq \mu^{-1} \circ W \circ W^{-1}\circ W \circ W^{- 1}. \]
\end{proof}
A modified proof of Urysohn's lemma follows. This proof is in part based on~\cite{2014arXiv1410.1504B}.
(I attempt to find common generalization of Urysohn's lemma and results from~\cite{2014arXiv1410.1504B}).
$\mathbb{Q}_2 \eqdef \setcond{ k/2^n }{k, n \in \mathbb{N}, 0 < k < 2^n }$.
\begin{thm}
Urysohn's lemma (see Wikipedia) for disjoint closed sets~$A$ and~$B$ and function~$f$ on a topological space~$\mu$
(considered as complete funcoid).
\end{thm}
\begin{proof}
(assuming conjecture~\bookref{fcd-comp-ent}) (used ProofWiki among other sources)
Because $A$ and $B$ are disjoint closed sets, we
have $\rsupfun{\mu} A \asymp \rsupfun{\mu} B$. Thus by the corollary~\ref{disj-mu} take $S_0 \in \up
\mu$ and $\neg \left( A \rsuprel{S_0 \circ S_0^{- 1}} B
\right)$.
We have $\mu \circ \mu^{- 1} \circ \mu \circ \mu^{- 1}
\sqsubseteq \mu \circ \mu^{- 1}$ that is $\up (\mu
\circ \mu^{- 1} \circ \mu \circ \mu^{- 1}) \supseteq
\up (\mu \circ \mu^{- 1})$.
Let's prove by induction: There is a sequence $S$ of binary relations starting
with $S_0$ such that $\neg \left( A \rsuprel{S_i \circ S_i^{- 1}} B
\right)$ and $S_i \circ S_i^{- 1} \sqsupseteq \mu^{-1} \circ S_{i + 1} \circ S_{i + 1}^{- 1}
\circ S_{i + 1} \circ S_{i + 1}^{- 1}$. It directly follows from the lemma
(and uses the conjecture).
Denote $U_i = S_{i + 1} \circ S_{i + 1}^{- 1}$. We have $U_i \sqsupseteq \mu^{-1} \circ U_{i +
1} \circ U_{i + 1}$ and $\neg \left( A \rsuprel{U_i} B \right)$.
By reflexivity of~$\mu$ we have $U_{i+1} \subseteq U_{i+1}\circ U_{i+1} \subseteq U_i$.
Define fractional degree of $U$: $U^r \eqdef U_1^{r_1} \circ
\ldots \circ U_{l_r}^{r_{l_r}}$ for every $r \in \mathbb{Q}_2$ where $r_1
\ldots r_{l_r}$ is the binary expansion of $r$.
Prove $U_r\subseteq U_0$. It is enough to prove
$U_0 \supseteq U_1 \circ \ldots \circ U_{l_r}$. It follows from $U_2 \circ
\ldots \circ U_{l_r} \subseteq U_1$, $U_3 \circ \ldots \circ U_{l_r} \subseteq
U_2$, \dots, $U_{l_r} \subseteq U_{l_r - 1}$ what was shown above.
Let's prove: For each $p,q\in\mathbb{Q}_2$ such that $p<q$ we have $\mu^{-1}\circ U^p\sqsubseteq U^q$.
We can assume binary expansion of~$p$ and~$q$ be the same length~$c$ (add zeros at the end of the shorter one).
Now it is enough to prove
\[ U_k\circ U_{k+1}^{q_{k+1}}\circ\dots\circ U_c^{q_c}\sqsupseteq\mu^{-1}\circ U_{k+1}^{p_{k+1}}\circ U_{k+2}^{p_{k+2}}\circ\dots\circ U_c^{p_c}. \]
But for this it's enough
\[ U_k\sqsupseteq\mu^{-1}\circ U_{k+1}\circ U_{k+2}\circ\dots\circ U_c \]
what can be easily proved by induction:
If $k=c$ then it takes the form $U_k\sqsupseteq\mu^{-1}$
what is obvious.
Suppose it holds for~$k$. Then $U_{k-1}\sqsupseteq\mu^{-1}\circ U_k\circ U_k\sqsupseteq
\mu^{-1}\circ U_k\circ \mu^{-1}\circ U_{k+1}\circ U_{k+2}\circ\dots\circ U_c\sqsupseteq
\mu^{-1}\circ U_k\circ U_{k+1}\circ U_{k+2}\circ\dots\circ U_c$, that is it holds
for all natural $k\leq c$.
It is easy to prove that $\rsupfun{U^r}X$ is open for every set~$X$.
We have $\rsupfun{\mu^{-1}}\rsupfun{U^p}X\sqsubseteq\rsupfun{U^q}X$.
\[ f (z) \eqdef \inf \left( \{ 1 \} \cup \setcond{ q \in
\mathbb{Q}_2 }{ z \in \rsupfun{U^q}
A } \right). \]
$f$ is properly defined because $\{ 1 \} \cup \setcond{ q \in \mathbb{Q}_2
}{ z \in \rsupfun{U^q} A }$ is
nonempty and bounded.
If $z \in A$ then $z \in \rsupfun{U^q} A$ for every $q \in
\mathbb{Q}_2$, thus $f (z) = 0$, because obviously $U^q \sqsupseteq 1$.
If $z \in B$ then $z \notin \rsupfun{U^q} A$ for every $q \in
\mathbb{Q}_2$, thus $f (z) = 1$, because $U^q \sqsubseteq U_0$.
It remains to prove that $f$ is continuous.
Let $D (x) = \{ 1 \} \cup \setcond{ q \in \mathbb{Q}_2 }{
z \in \rsupfun{U^q} A }$.
To show that f is continuous, we first prove two smaller results:
(a) $x\in\rsupfun{\mu^{-1}}\rsupfun{U^r}A \Rightarrow f(x)\leq r$.
We have $x\in\rsupfun{\mu^{-1}}\rsupfun{U^r}A \Rightarrow \forall s>r:x\in\rsupfun{U^s}A$,
so $D(x)$ contains all rationals greater than $r$. Thus $f(x)\leq r$ by definition of~$f$.
(b) $x\notin\rsupfun{U^r}A \Rightarrow f(x)\geq r$.
We have $x\notin\rsupfun{U^r}A \Rightarrow \forall s<r:x\notin\rsupfun{U^s}A$.
So $D(x)$ contains no rational less than $r$. Thus $f(x)\geq r$.
Let $x_0\in S$ and let $]c;d[$ be an open real interval containing $f(x)$.
We will find a neighborhood $T$ of $x_0$ such that $\rsupfun{f}T\subseteq]c;d[$.
Choose $p,q\in\mathbb{Q}$ such that $c < p < f(x_0) < q < d$. Let $T=\rsupfun{U^q}A\setminus\rsupfun{\mu^{-1}}\rsupfun{U^p}A$.
Then since $f(x_0)<q$, we have that (b) implies vacuously that $x\in\rsupfun{U^q}A$.
Since $f(x_0)>p$, (a) implies $x_0\notin\rsupfun{U^p}A$.
Hence $x_0\in T$. Then $T$ is a neighborhood of~$x_0$ because $T$ is open.
Finally, let $x\in T$.
Then $x\in\rsupfun{U^q}A\subseteq\rsupfun{\mu^{-1}}\rsupfun{U^q}A$. So $f(x)\leq q$ by~(a).
Also $x\notin\rsupfun{\mu^{-1}}\rsupfun{U^p}A$, so $x\notin\rsupfun{U^p}A$ and $f(x)\geq p$ by~(b).
Thus: $f(x)\in[p;q]\subseteq]c;d[$.
Therefore $f$ is continuous.
\begin{grayed}
Claim A: $f (x) > q \Rightarrow x \notin \langle \mu^{- 1}
\rangle^{\ast} \rsupfun{U^q} A$
Claim B: $f (x) < q \Rightarrow x \in \rsupfun{U^q} A$
Proof of claim A: If $f (x) > q$ then then there must be some gap between $q$
and $D (x)$; in particular, there exists some $q'$ such that $q < q' < f (x)$.
But $q' < f (x) \Rightarrow x \notin \rsupfun{U^q} A \Rightarrow x
\notin \rsupfun{\mu^{- 1}} \rsupfun{U^q} A$ (using that $\rsupfun{U^r}X$ is open).
Proof of claim B: If $f (x) < q$ then there exists $q' \in D (x)$ such that $f
(x) < q' < q$, in which case $q \in D (x)$, so $x \in \langle U^q
\rangle^{\ast} A$.
To show that $f$ is continuous, it's enough to prove that preimages of $] a ;
1]$ and $[0 ; a [$ are open.
Suppose $f (x) \in] a ; 1]$. Pick some $q$ with $a < q < f (x)$. We claim that
the open set $W = X \setminus \rsupfun{f^{- 1}} \langle U^q
\rangle^{\ast} A$ is a neighborhood of $x$ that is mapped by $f$ into $] a ;
1]$. First, by (A), $f (x) > q \Rightarrow x \in W$, so $W$ is a neighborhood
of $x$. If $y$ is any point of $W$, then $f (y)$ must be $\geq q > a$;
otherwise, if $f (y) < q$, then, by (B) $y \in \rsupfun{U^q} A
\subseteq \rsupfun{f^{- 1}} \rsupfun{U^q} A$.
Suppose $x \in f^{- 1} [0 ; b [$ that is $f (x) < b$ and pick $q$ such that $f
(x) < q < b$. By (B) $x \in \rsupfun{U^q} A$. We claim that the
neighborhood $\rsupfun{U^q} A$ is mapped by $f$ into $[0 ; b [$.
Suppose $y$ is any point of $\rsupfun{U^q} A$. Then $q \in D
(y)$, so $f (y) \leq q < b$.
\end{grayed}
\end{proof}
\begin{thm}
(from~\cite{2014arXiv1410.1504B})
If $\mu$ is a normal quasi-uniformity on a topological space~$\nu$, then for any nonempty subset $A\in\Ob\nu$
and entourage~$U\in\up\mu$ there exists a continuous function $f:\Ob\nu\rightarrow[0;1]$ such that
$A\sqsubseteq\rsupfun{f^{-1}}\{0\}\sqsubseteq\rsupfun{f^{-1}}[0;1[\sqsubseteq\rsupfun{{\nu^{-1}}^\circ}\rsupfun{\nu^{-1}}\rsupfun{U}A$.
\end{thm}
\begin{proof}
Choose inductively a sequence of entourages $(U_n)_{n = 0}^{\infty}$ such that
$U_0 = U$ and $U_{n + 1} \circ U_{n + 1} \sqsubseteq U_n$.
Denote $l_r = \max \setcond{ n \in \mathbb{N} }{ r_n = 1 }$.
Define $U^r = U_{l_r}^{r_{l_r}} \circ \ldots \circ U_1^{r_1}$
Prove $\rsupfun{\nu^{- 1}} \rsupfun{U^q} A
\sqsubseteq \rsupfun{\nu^{- 1 \circ}} \rsupfun{\nu^{- 1}}
\rsupfun{U^r} A$ for any $q < r$ in
$\mathbb{Q}_2$. \fxnote{Can be easily rewritten with the formula $\rsupfun{\nu} \rsupfun{\nu^{- 1}} \rsupfun{U^q} A
\sqsubseteq \rsupfun{\nu^{- 1}} \rsupfun{U^r} A$
instead. It may extend to non-complete funcoids.}
There is such $l$ that $0 = q_l < r_l = 1$ and $q_i = r_i$ for all $i < l$.
It follows $l_q \neq l \leq l_r$.
Consider variants:
\begin{description}
\item[$l_q < l$] $\rsupfun{\nu^{- 1}} \rsupfun{U^q} A \sqsubseteq \rsupfun{\nu^{- 1}} \left\langle
U_{l_q} \circ \ldots \circ U_1^{q_1q_{l_q}} \right\rangle^{\ast} A = \rsupfun{\nu^{- 1}} \left\langle U_{l_q}^{r_{l_q}} \circ \ldots \circ
U_1^{r_1} \right\rangle^{\ast} A \sqsubseteq \langle \nu^{- 1}
\rangle^{\ast} \left\langle U_{l - 1}^{r_{l - 1}} \circ \ldots \circ
U_1^{r_1} \right\rangle^{\ast} A \sqsubseteq \langle \nu^{- 1 \circ}
\rangle^{\ast} \rsupfun{\nu^{- 1}} \langle U_l^{r_l} \circ U_{l
- 1}^{r_{l - 1}} \circ \ldots \circ U_1^{r_1} \rangle^{\ast} A = \langle
\nu^{- 1 \circ} \rangle^{\ast} \rsupfun{\nu^{- 1}} \langle U^r
\rangle^{\ast} A$ (use $U_l^{r_l} \in \up \tofcd
\mu$ by theorem 992).
\item[$l < l_q$] Inclusions $U_k \circ U_k \sqsubseteq U_{k - 1}$ for $l < k
\leq l_q + 1$ guarantee that $U_{l_q + 1} \circ U_{l_q} \circ \ldots \circ
U_{l + 1} \sqsubseteq U_l$ and then $\rsupfun{\nu^{- 1}}
\rsupfun{U^q} A \sqsubseteq \rsupfun{\nu^{- 1}}
\left\langle U_{l_q}^{q_{l_q}} \circ \ldots \circ U_1^{q_1}
\right\rangle^{\ast} A \sqsubseteq \rsupfun{\nu^{- 1 \circ}}
\rsupfun{\nu^{- 1}} \left\langle U_{l_q + 1}^{q_{l_q + 1}}
\circ U_{l_q}^{q_{l_q}} \circ \ldots \circ U_1^{q_1} \right\rangle^{\ast} A
= \rsupfun{\nu^{- 1 \circ}} \rsupfun{\nu^{- 1}}
\left\langle U_{l_q + 1} \circ U_{l_q}^{q_{l_q}} \circ \ldots \circ U_l^0
\circ \ldots \circ U_1^{q_1} \right\rangle^{\ast} A \sqsubseteq \left\langle
\nu^{- 1 \circ} \right\rangle^{\ast} \rsupfun{\nu^{- 1}}
\langle U_l \circ U_{l - 1}^{q_{l - 1}} \circ \ldots \circ U_1^{q_1}
\rangle^{\ast} A \sqsubseteq \rsupfun{\nu^{- 1 \circ}} \langle
\nu^{- 1} \rangle^{\ast} \left\langle U_l^{r_l} \circ U_{l - 1}^{r_{l - 1}}
\circ \ldots \circ U_1^{r_1} \right\rangle^{\ast} A \sqsubseteq \langle
\nu^{- 1 \circ} \rangle^{\ast} \rsupfun{\nu^{- 1}} \left\langle
U_{l_r}^{r_{l_r}} \circ \ldots \circ U_1^{r_1} \right\rangle^{\ast} A =
\rsupfun{\nu^{- 1 \circ}} \rsupfun{\nu^{- 1}}
\langle U_r \rangle^{\ast} A$.
\end{description}
Define $f$ by the formula $f (z) = \inf \left( \{ 1 \} \cup \setcond{ q \in
\mathbb{Q}_2 }{ z \in \langle \nu^{- 1}
\rangle^{\ast} \rsupfun{U^q} A } \right)$.
It is clear?? that $A \sqsubseteq \rsupfun{f^{- 1}} \{ 0 \}$ and
$\rsupfun{f^{- 1}} [0 ; 1 [ \sqsubseteq
\bigcup_{q \in \mathbb{Q}_2} \rsupfun{\nu^{- 1}} \langle U^q
\rangle^{\ast} A = \bigcup_{r \in \mathbb{Q}_2} \langle \nu^{- 1 \circ}
\rangle^{\ast} \rsupfun{\nu^{- 1}} \rsupfun{U^r} A
\sqsubseteq \rsupfun{\nu^{- 1 \circ}} \langle \nu^{- 1}
\rangle^{\ast} \langle U_0 \rangle^{\ast} A$.
To prove that the map $f : X \rightarrow [0, 1]$ is continuous, it suffices to
check that for every real number $a \in] 0 ; 1 [$ the sets $\langle f^{- 1}
\rangle^{\ast} [0 ; a [$ and $\rsupfun{f^{- 1}}] a ; 1]$ are
open. This follows from the equalitites
$\rsupfun{f^{- 1}} [0 ; a [= \bigcup_{\mathbb{Q}_2 \ni q < a}
\rsupfun{\nu^{- 1 \circ}} \rsupfun{\nu^{- 1}}
\rsupfun{U^q} A$ and $\rsupfun{f^{- 1}}] a ; 1] =
\bigcup_{\mathbb{Q}_2 \ni r > a} (X \setminus \langle \nu^{- 1}
\rangle^{\ast} \rsupfun{U^r} A)$.
\end{proof}
How the formulas for normal ($T_4$) topological spaces and normal quasi-uniformities are related?
Maybe this works: Replacing $\nu \rightarrow \mu \circ \mu^{- 1}$, $\mu
\rightarrow 1$ makes $\nu \circ \nu^{- 1} \sqsubseteq \nu^{- 1} \circ
\tofcd \mu \rightarrow \mu \circ \mu^{- 1}
\circ \mu \circ \mu^{- 1} \sqsubseteq \mu \circ \mu^{-
1}$.
\url{https://www.researchgate.net/project/The-lattice-LG-of-group-topologies}