-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmesh_tools.py
1083 lines (1000 loc) · 55.3 KB
/
mesh_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import numpy as np
try:
import cynetworkx as netx
except ImportError:
import networkx as netx
import json
import scipy.misc as misc
#import OpenEXR
import scipy.signal as signal
import matplotlib.pyplot as plt
import cv2
import scipy.misc as misc
from skimage import io
from functools import partial
from vispy import scene, io
from vispy.scene import visuals
from functools import reduce
# from moviepy.editor import ImageSequenceClip
import scipy.misc as misc
from vispy.visuals.filters import Alpha
import cv2
from skimage.transform import resize
import copy
import torch
import os
from utils import refine_depth_around_edge, smooth_cntsyn_gap
from utils import require_depth_edge, filter_irrelevant_edge_new, open_small_mask
from skimage.feature import canny
from scipy import ndimage
import time
import transforms3d
def relabel_node(mesh, nodes, cur_node, new_node):
if cur_node == new_node:
return mesh
mesh.add_node(new_node)
for key, value in nodes[cur_node].items():
nodes[new_node][key] = value
for ne in mesh.neighbors(cur_node):
mesh.add_edge(new_node, ne)
mesh.remove_node(cur_node)
return mesh
def filter_edge(mesh, edge_ccs, config, invalid=False):
context_ccs = [set() for _ in edge_ccs]
mesh_nodes = mesh.nodes
for edge_id, edge_cc in enumerate(edge_ccs):
if config['context_thickness'] == 0:
continue
edge_group = {}
for edge_node in edge_cc:
far_nodes = mesh_nodes[edge_node].get('far')
if far_nodes is None:
continue
for far_node in far_nodes:
context_ccs[edge_id].add(far_node)
if mesh_nodes[far_node].get('edge_id') is not None:
if edge_group.get(mesh_nodes[far_node]['edge_id']) is None:
edge_group[mesh_nodes[far_node]['edge_id']] = set()
edge_group[mesh_nodes[far_node]['edge_id']].add(far_node)
if len(edge_cc) > 2:
for edge_key in [*edge_group.keys()]:
if len(edge_group[edge_key]) == 1:
context_ccs[edge_id].remove([*edge_group[edge_key]][0])
valid_edge_ccs = []
for xidx, yy in enumerate(edge_ccs):
if invalid is not True and len(context_ccs[xidx]) > 0:
# if len(context_ccs[xidx]) > 0:
valid_edge_ccs.append(yy)
elif invalid is True and len(context_ccs[xidx]) == 0:
valid_edge_ccs.append(yy)
else:
valid_edge_ccs.append(set())
# valid_edge_ccs = [yy for xidx, yy in enumerate(edge_ccs) if len(context_ccs[xidx]) > 0]
return valid_edge_ccs
def extrapolate(global_mesh,
info_on_pix,
image,
depth,
other_edge_with_id,
edge_map,
edge_ccs,
depth_edge_model,
depth_feat_model,
rgb_feat_model,
config,
direc='right-up'):
h_off, w_off = global_mesh.graph['hoffset'], global_mesh.graph['woffset']
noext_H, noext_W = global_mesh.graph['noext_H'], global_mesh.graph['noext_W']
if "up" in direc.lower() and "-" not in direc.lower():
all_anchor = [0, h_off + config['context_thickness'], w_off, w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [0, h_off, w_off, w_off + noext_W]
context_anchor = [h_off, h_off + config['context_thickness'], w_off, w_off + noext_W]
valid_line_anchor = [h_off, h_off + 1, w_off, w_off + noext_W]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "down" in direc.lower() and "-" not in direc.lower():
all_anchor = [h_off + noext_H - config['context_thickness'], 2 * h_off + noext_H, w_off, w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off + noext_H, 2 * h_off + noext_H, w_off, w_off + noext_W]
context_anchor = [h_off + noext_H - config['context_thickness'], h_off + noext_H, w_off, w_off + noext_W]
valid_line_anchor = [h_off + noext_H - 1, h_off + noext_H, w_off, w_off + noext_W]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "left" in direc.lower() and "-" not in direc.lower():
all_anchor = [h_off, h_off + noext_H, 0, w_off + config['context_thickness']]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off, h_off + noext_H, 0, w_off]
context_anchor = [h_off, h_off + noext_H, w_off, w_off + config['context_thickness']]
valid_line_anchor = [h_off, h_off + noext_H, w_off, w_off + 1]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "right" in direc.lower() and "-" not in direc.lower():
all_anchor = [h_off, h_off + noext_H, w_off + noext_W - config['context_thickness'], 2 * w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off, h_off + noext_H, w_off + noext_W, 2 * w_off + noext_W]
context_anchor = [h_off, h_off + noext_H, w_off + noext_W - config['context_thickness'], w_off + noext_W]
valid_line_anchor = [h_off, h_off + noext_H, w_off + noext_W - 1, w_off + noext_W]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "left" in direc.lower() and "up" in direc.lower() and "-" in direc.lower():
all_anchor = [0, h_off + config['context_thickness'], 0, w_off + config['context_thickness']]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [0, h_off, 0, w_off]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
elif "left" in direc.lower() and "down" in direc.lower() and "-" in direc.lower():
all_anchor = [h_off + noext_H - config['context_thickness'], 2 * h_off + noext_H, 0, w_off + config['context_thickness']]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off + noext_H, 2 * h_off + noext_H, 0, w_off]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
elif "right" in direc.lower() and "up" in direc.lower() and "-" in direc.lower():
all_anchor = [0, h_off + config['context_thickness'], w_off + noext_W - config['context_thickness'], 2 * w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [0, h_off, w_off + noext_W, 2 * w_off + noext_W]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
elif "right" in direc.lower() and "down" in direc.lower() and "-" in direc.lower():
all_anchor = [h_off + noext_H - config['context_thickness'], 2 * h_off + noext_H, w_off + noext_W - config['context_thickness'], 2 * w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off + noext_H, 2 * h_off + noext_H, w_off + noext_W, 2 * w_off + noext_W]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
global_mask = np.zeros_like(depth)
global_mask[mask_anchor[0]:mask_anchor[1],mask_anchor[2]:mask_anchor[3]] = 1
mask = global_mask[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] * 1
context = 1 - mask
global_context = np.zeros_like(depth)
global_context[all_anchor[0]:all_anchor[1],all_anchor[2]:all_anchor[3]] = context
# context = global_context[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] * 1
valid_area = mask + context
input_rgb = image[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] / 255. * context[..., None]
input_depth = depth[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] * context
log_depth = np.log(input_depth + 1e-8)
log_depth[mask > 0] = 0
input_mean_depth = np.mean(log_depth[context > 0])
input_zero_mean_depth = (log_depth - input_mean_depth) * context
input_disp = 1./np.abs(input_depth)
input_disp[mask > 0] = 0
input_disp = input_disp / input_disp.max()
valid_line = np.zeros_like(depth)
if valid_line_anchor is not None:
valid_line[valid_line_anchor[0]:valid_line_anchor[1], valid_line_anchor[2]:valid_line_anchor[3]] = 1
valid_line = valid_line[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]]
# f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True); ax1.imshow(global_context * 1 + global_mask * 2); ax2.imshow(image); plt.show()
# f, ((ax1, ax2, ax3)) = plt.subplots(1, 3, sharex=True, sharey=True); ax1.imshow(context * 1 + mask * 2); ax2.imshow(input_rgb); ax3.imshow(valid_line); plt.show()
# import pdb; pdb.set_trace()
# return
input_edge_map = edge_map[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]] * context
input_other_edge_with_id = other_edge_with_id[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]]
end_depth_maps = ((valid_line * input_edge_map) > 0) * input_depth
if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0):
device = config["gpu_ids"]
else:
device = "cpu"
valid_edge_ids = sorted(list(input_other_edge_with_id[(valid_line * input_edge_map) > 0]))
valid_edge_ids = valid_edge_ids[1:] if (len(valid_edge_ids) > 0 and valid_edge_ids[0] == -1) else valid_edge_ids
edge = reduce(lambda x, y: (x + (input_other_edge_with_id == y).astype(np.uint8)).clip(0, 1), [np.zeros_like(mask)] + list(valid_edge_ids))
t_edge = torch.FloatTensor(edge).to(device)[None, None, ...]
t_rgb = torch.FloatTensor(input_rgb).to(device).permute(2,0,1).unsqueeze(0)
t_mask = torch.FloatTensor(mask).to(device)[None, None, ...]
t_context = torch.FloatTensor(context).to(device)[None, None, ...]
t_disp = torch.FloatTensor(input_disp).to(device)[None, None, ...]
t_depth_zero_mean_depth = torch.FloatTensor(input_zero_mean_depth).to(device)[None, None, ...]
depth_edge_output = depth_edge_model.forward_3P(t_mask, t_context, t_rgb, t_disp, t_edge, unit_length=128,
cuda=device)
t_output_edge = (depth_edge_output> config['ext_edge_threshold']).float() * t_mask + t_edge
output_raw_edge = t_output_edge.data.cpu().numpy().squeeze()
# import pdb; pdb.set_trace()
mesh = netx.Graph()
hxs, hys = np.where(output_raw_edge * mask > 0)
valid_map = mask + context
for hx, hy in zip(hxs, hys):
node = (hx, hy)
mesh.add_node((hx, hy))
eight_nes = [ne for ne in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1), \
(hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)]\
if 0 <= ne[0] < output_raw_edge.shape[0] and 0 <= ne[1] < output_raw_edge.shape[1] and 0 < output_raw_edge[ne[0], ne[1]]]
for ne in eight_nes:
mesh.add_edge(node, ne, length=np.hypot(ne[0] - hx, ne[1] - hy))
if end_depth_maps[ne[0], ne[1]] != 0:
mesh.nodes[ne[0], ne[1]]['cnt'] = True
mesh.nodes[ne[0], ne[1]]['depth'] = end_depth_maps[ne[0], ne[1]]
ccs = [*netx.connected_components(mesh)]
end_pts = []
for cc in ccs:
end_pts.append(set())
for node in cc:
if mesh.nodes[node].get('cnt') is not None:
end_pts[-1].add((node[0], node[1], mesh.nodes[node]['depth']))
fpath_map = np.zeros_like(output_raw_edge) - 1
npath_map = np.zeros_like(output_raw_edge) - 1
for end_pt, cc in zip(end_pts, ccs):
sorted_end_pt = []
if len(end_pt) >= 2:
continue
if len(end_pt) == 0:
continue
if len(end_pt) == 1:
sub_mesh = mesh.subgraph(list(cc)).copy()
pnodes = netx.periphery(sub_mesh)
ends = [*end_pt]
edge_id = global_mesh.nodes[(ends[0][0] + all_anchor[0], ends[0][1] + all_anchor[2], -ends[0][2])]['edge_id']
pnodes = sorted(pnodes,
key=lambda x: np.hypot((x[0] - ends[0][0]), (x[1] - ends[0][1])),
reverse=True)[0]
npath = [*netx.shortest_path(sub_mesh, (ends[0][0], ends[0][1]), pnodes, weight='length')]
for np_node in npath:
npath_map[np_node[0], np_node[1]] = edge_id
fpath = []
if global_mesh.nodes[(ends[0][0] + all_anchor[0], ends[0][1] + all_anchor[2], -ends[0][2])].get('far') is None:
print("None far")
import pdb; pdb.set_trace()
else:
fnodes = global_mesh.nodes[(ends[0][0] + all_anchor[0], ends[0][1] + all_anchor[2], -ends[0][2])].get('far')
fnodes = [(xx[0] - all_anchor[0], xx[1] - all_anchor[2], xx[2]) for xx in fnodes]
dmask = mask + 0
did = 0
while True:
did += 1
dmask = cv2.dilate(dmask, np.ones((3, 3)), iterations=1)
if did > 3:
break
# ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0)]
ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0 and mask[fnode[0], fnode[1]] == 0)]
if len(ffnode) > 0:
fnode = ffnode[0]
break
if len(ffnode) == 0:
continue
fpath.append((fnode[0], fnode[1]))
for step in range(0, len(npath) - 1):
parr = (npath[step + 1][0] - npath[step][0], npath[step + 1][1] - npath[step][1])
new_loc = (fpath[-1][0] + parr[0], fpath[-1][1] + parr[1])
new_loc_nes = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1)]\
if xx[0] >= 0 and xx[0] < fpath_map.shape[0] and xx[1] >= 0 and xx[1] < fpath_map.shape[1]]
if np.sum([fpath_map[nlne[0], nlne[1]] for nlne in new_loc_nes]) != -4:
break
if npath_map[new_loc[0], new_loc[1]] != -1:
if npath_map[new_loc[0], new_loc[1]] != edge_id:
break
else:
continue
if valid_area[new_loc[0], new_loc[1]] == 0:
break
new_loc_nes_eight = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1),
(new_loc[0] + 1, new_loc[1] + 1), (new_loc[0] + 1, new_loc[1] - 1),
(new_loc[0] - 1, new_loc[1] - 1), (new_loc[0] - 1, new_loc[1] + 1)]\
if xx[0] >= 0 and xx[0] < fpath_map.shape[0] and xx[1] >= 0 and xx[1] < fpath_map.shape[1]]
if np.sum([int(npath_map[nlne[0], nlne[1]] == edge_id) for nlne in new_loc_nes_eight]) == 0:
break
fpath.append((fpath[-1][0] + parr[0], fpath[-1][1] + parr[1]))
if step != len(npath) - 2:
for xx in npath[step+1:]:
if npath_map[xx[0], xx[1]] == edge_id:
npath_map[xx[0], xx[1]] = -1
if len(fpath) > 0:
for fp_node in fpath:
fpath_map[fp_node[0], fp_node[1]] = edge_id
# import pdb; pdb.set_trace()
far_edge = (fpath_map > -1).astype(np.uint8)
update_edge = (npath_map > -1) * mask + edge
t_update_edge = torch.FloatTensor(update_edge).to(device)[None, None, ...]
depth_output = depth_feat_model.forward_3P(t_mask, t_context, t_depth_zero_mean_depth, t_update_edge, unit_length=128,
cuda=device)
depth_output = depth_output.cpu().data.numpy().squeeze()
depth_output = np.exp(depth_output + input_mean_depth) * mask # + input_depth * context
# if "right" in direc.lower() and "-" not in direc.lower():
# plt.imshow(depth_output); plt.show()
# import pdb; pdb.set_trace()
# f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True); ax1.imshow(depth_output); ax2.imshow(npath_map + fpath_map); plt.show()
for near_id in np.unique(npath_map[npath_map > -1]):
depth_output = refine_depth_around_edge(depth_output.copy(),
(fpath_map == near_id).astype(np.uint8) * mask, # far_edge_map_in_mask,
(fpath_map == near_id).astype(np.uint8), # far_edge_map,
(npath_map == near_id).astype(np.uint8) * mask,
mask.copy(),
np.zeros_like(mask),
config)
# if "right" in direc.lower() and "-" not in direc.lower():
# plt.imshow(depth_output); plt.show()
# import pdb; pdb.set_trace()
# f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True); ax1.imshow(depth_output); ax2.imshow(npath_map + fpath_map); plt.show()
rgb_output = rgb_feat_model.forward_3P(t_mask, t_context, t_rgb, t_update_edge, unit_length=128,
cuda=device)
# rgb_output = rgb_feat_model.forward_3P(t_mask, t_context, t_rgb, t_update_edge, unit_length=128, cuda=config['gpu_ids'])
if config.get('gray_image') is True:
rgb_output = rgb_output.mean(1, keepdim=True).repeat((1,3,1,1))
rgb_output = ((rgb_output.squeeze().data.cpu().permute(1,2,0).numpy() * mask[..., None] + input_rgb) * 255).astype(np.uint8)
image[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]][mask > 0] = rgb_output[mask > 0] # np.array([255,0,0]) # rgb_output[mask > 0]
depth[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]][mask > 0] = depth_output[mask > 0]
# nxs, nys = np.where(mask > -1)
# for nx, ny in zip(nxs, nys):
# info_on_pix[(nx, ny)][0]['color'] = rgb_output[]
nxs, nys = np.where((npath_map > -1))
for nx, ny in zip(nxs, nys):
n_id = npath_map[nx, ny]
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < fpath_map.shape[0] and 0 <= xx[1] < fpath_map.shape[1]]
for nex, ney in four_nes:
if fpath_map[nex, ney] == n_id:
na, nb = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth']), \
(nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_edge(na, nb):
global_mesh.remove_edge(na, nb)
nxs, nys = np.where((fpath_map > -1))
for nx, ny in zip(nxs, nys):
n_id = fpath_map[nx, ny]
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < npath_map.shape[0] and 0 <= xx[1] < npath_map.shape[1]]
for nex, ney in four_nes:
if npath_map[nex, ney] == n_id:
na, nb = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth']), \
(nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_edge(na, nb):
global_mesh.remove_edge(na, nb)
nxs, nys = np.where(mask > 0)
for x, y in zip(nxs, nys):
x = x + all_anchor[0]
y = y + all_anchor[2]
cur_node = (x, y, 0)
new_node = (x, y, -abs(depth[x, y]))
disp = 1. / -abs(depth[x, y])
mapping_dict = {cur_node: new_node}
info_on_pix, global_mesh = update_info(mapping_dict, info_on_pix, global_mesh)
global_mesh.nodes[new_node]['color'] = image[x, y]
global_mesh.nodes[new_node]['old_color'] = image[x, y]
global_mesh.nodes[new_node]['disp'] = disp
info_on_pix[(x, y)][0]['depth'] = -abs(depth[x, y])
info_on_pix[(x, y)][0]['disp'] = disp
info_on_pix[(x, y)][0]['color'] = image[x, y]
nxs, nys = np.where((npath_map > -1))
for nx, ny in zip(nxs, nys):
self_node = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth'])
if global_mesh.has_node(self_node) is False:
break
n_id = int(round(npath_map[nx, ny]))
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < fpath_map.shape[0] and 0 <= xx[1] < fpath_map.shape[1]]
for nex, ney in four_nes:
ne_node = (nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_node(ne_node) is False:
continue
if fpath_map[nex, ney] == n_id:
if global_mesh.nodes[self_node].get('edge_id') is None:
global_mesh.nodes[self_node]['edge_id'] = n_id
edge_ccs[n_id].add(self_node)
info_on_pix[(self_node[0], self_node[1])][0]['edge_id'] = n_id
if global_mesh.has_edge(self_node, ne_node) is True:
global_mesh.remove_edge(self_node, ne_node)
if global_mesh.nodes[self_node].get('far') is None:
global_mesh.nodes[self_node]['far'] = []
global_mesh.nodes[self_node]['far'].append(ne_node)
global_fpath_map = np.zeros_like(other_edge_with_id) - 1
global_fpath_map[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]] = fpath_map
fpath_ids = np.unique(global_fpath_map)
fpath_ids = fpath_ids[1:] if fpath_ids.shape[0] > 0 and fpath_ids[0] == -1 else []
fpath_real_id_map = np.zeros_like(global_fpath_map) - 1
for fpath_id in fpath_ids:
fpath_real_id = np.unique(((global_fpath_map == fpath_id).astype(np.int) * (other_edge_with_id + 1)) - 1)
fpath_real_id = fpath_real_id[1:] if fpath_real_id.shape[0] > 0 and fpath_real_id[0] == -1 else []
fpath_real_id = fpath_real_id.astype(np.int)
fpath_real_id = np.bincount(fpath_real_id).argmax()
fpath_real_id_map[global_fpath_map == fpath_id] = fpath_real_id
nxs, nys = np.where((fpath_map > -1))
for nx, ny in zip(nxs, nys):
self_node = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth'])
n_id = fpath_map[nx, ny]
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < npath_map.shape[0] and 0 <= xx[1] < npath_map.shape[1]]
for nex, ney in four_nes:
ne_node = (nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_node(ne_node) is False:
continue
if npath_map[nex, ney] == n_id or global_mesh.nodes[ne_node].get('edge_id') == n_id:
if global_mesh.has_edge(self_node, ne_node) is True:
global_mesh.remove_edge(self_node, ne_node)
if global_mesh.nodes[self_node].get('near') is None:
global_mesh.nodes[self_node]['near'] = []
if global_mesh.nodes[self_node].get('edge_id') is None:
f_id = int(round(fpath_real_id_map[self_node[0], self_node[1]]))
global_mesh.nodes[self_node]['edge_id'] = f_id
info_on_pix[(self_node[0], self_node[1])][0]['edge_id'] = f_id
edge_ccs[f_id].add(self_node)
global_mesh.nodes[self_node]['near'].append(ne_node)
return info_on_pix, global_mesh, image, depth, edge_ccs
# for edge_cc in edge_ccs:
# for edge_node in edge_cc:
# edge_ccs
# context_ccs, mask_ccs, broken_mask_ccs, edge_ccs, erode_context_ccs, init_mask_connect, edge_maps, extend_context_ccs, extend_edge_ccs
def get_valid_size(imap):
x_max = np.where(imap.sum(1).squeeze() > 0)[0].max() + 1
x_min = np.where(imap.sum(1).squeeze() > 0)[0].min()
y_max = np.where(imap.sum(0).squeeze() > 0)[0].max() + 1
y_min = np.where(imap.sum(0).squeeze() > 0)[0].min()
size_dict = {'x_max':x_max, 'y_max':y_max, 'x_min':x_min, 'y_min':y_min}
return size_dict
def dilate_valid_size(isize_dict, imap, dilate=[0, 0]):
osize_dict = copy.deepcopy(isize_dict)
osize_dict['x_min'] = max(0, osize_dict['x_min'] - dilate[0])
osize_dict['x_max'] = min(imap.shape[0], osize_dict['x_max'] + dilate[0])
osize_dict['y_min'] = max(0, osize_dict['y_min'] - dilate[0])
osize_dict['y_max'] = min(imap.shape[1], osize_dict['y_max'] + dilate[1])
return osize_dict
def size_operation(size_a, size_b, operation):
assert operation == '+' or operation == '-', "Operation must be '+' (union) or '-' (exclude)"
osize = {}
if operation == '+':
osize['x_min'] = min(size_a['x_min'], size_b['x_min'])
osize['y_min'] = min(size_a['y_min'], size_b['y_min'])
osize['x_max'] = max(size_a['x_max'], size_b['x_max'])
osize['y_max'] = max(size_a['y_max'], size_b['y_max'])
assert operation != '-', "Operation '-' is undefined !"
return osize
def fill_dummy_bord(mesh, info_on_pix, image, depth, config):
context = np.zeros_like(depth).astype(np.uint8)
context[mesh.graph['hoffset']:mesh.graph['hoffset'] + mesh.graph['noext_H'],
mesh.graph['woffset']:mesh.graph['woffset'] + mesh.graph['noext_W']] = 1
mask = 1 - context
xs, ys = np.where(mask > 0)
depth = depth * context
image = image * context[..., None]
cur_depth = 0
cur_disp = 0
color = [0, 0, 0]
for x, y in zip(xs, ys):
cur_node = (x, y, cur_depth)
mesh.add_node(cur_node, color=color,
synthesis=False,
disp=cur_disp,
cc_id=set(),
ext_pixel=True)
info_on_pix[(x, y)] = [{'depth':cur_depth,
'color':mesh.nodes[(x, y, cur_depth)]['color'],
'synthesis':False,
'disp':mesh.nodes[cur_node]['disp'],
'ext_pixel':True}]
# for x, y in zip(xs, ys):
four_nes = [(xx, yy) for xx, yy in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] if\
0 <= x < mesh.graph['H'] and 0 <= y < mesh.graph['W'] and info_on_pix.get((xx, yy)) is not None]
for ne in four_nes:
# if (ne[0] - x) + (ne[1] - y) == 1 and info_on_pix.get((ne[0], ne[1])) is not None:
mesh.add_edge(cur_node, (ne[0], ne[1], info_on_pix[(ne[0], ne[1])][0]['depth']))
return mesh, info_on_pix
def enlarge_border(mesh, info_on_pix, depth, image, config):
mesh.graph['hoffset'], mesh.graph['woffset'] = config['extrapolation_thickness'], config['extrapolation_thickness']
mesh.graph['bord_up'], mesh.graph['bord_left'], mesh.graph['bord_down'], mesh.graph['bord_right'] = \
0, 0, mesh.graph['H'], mesh.graph['W']
# new_image = np.pad(image,
# pad_width=((config['extrapolation_thickness'], config['extrapolation_thickness']),
# (config['extrapolation_thickness'], config['extrapolation_thickness']), (0, 0)),
# mode='constant')
# new_depth = np.pad(depth,
# pad_width=((config['extrapolation_thickness'], config['extrapolation_thickness']),
# (config['extrapolation_thickness'], config['extrapolation_thickness'])),
# mode='constant')
return mesh, info_on_pix, depth, image
def fill_missing_node(mesh, info_on_pix, image, depth):
for x in range(mesh.graph['bord_up'], mesh.graph['bord_down']):
for y in range(mesh.graph['bord_left'], mesh.graph['bord_right']):
if info_on_pix.get((x, y)) is None:
print("fill missing node = ", x, y)
import pdb; pdb.set_trace()
re_depth, re_count = 0, 0
for ne in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]:
if info_on_pix.get(ne) is not None:
re_depth += info_on_pix[ne][0]['depth']
re_count += 1
if re_count == 0:
re_depth = -abs(depth[x, y])
else:
re_depth = re_depth / re_count
depth[x, y] = abs(re_depth)
info_on_pix[(x, y)] = [{'depth':re_depth,
'color':image[x, y],
'synthesis':False,
'disp':1./re_depth}]
mesh.add_node((x, y, re_depth), color=image[x, y],
synthesis=False,
disp=1./re_depth,
cc_id=set())
return mesh, info_on_pix, depth
def refresh_bord_depth(mesh, info_on_pix, image, depth):
H, W = mesh.graph['H'], mesh.graph['W']
corner_nodes = [(mesh.graph['bord_up'], mesh.graph['bord_left']),
(mesh.graph['bord_up'], mesh.graph['bord_right'] - 1),
(mesh.graph['bord_down'] - 1, mesh.graph['bord_left']),
(mesh.graph['bord_down'] - 1, mesh.graph['bord_right'] - 1)]
# (0, W - 1), (H - 1, 0), (H - 1, W - 1)]
bord_nodes = []
bord_nodes += [(mesh.graph['bord_up'], xx) for xx in range(mesh.graph['bord_left'] + 1, mesh.graph['bord_right'] - 1)]
bord_nodes += [(mesh.graph['bord_down'] - 1, xx) for xx in range(mesh.graph['bord_left'] + 1, mesh.graph['bord_right'] - 1)]
bord_nodes += [(xx, mesh.graph['bord_left']) for xx in range(mesh.graph['bord_up'] + 1, mesh.graph['bord_down'] - 1)]
bord_nodes += [(xx, mesh.graph['bord_right'] - 1) for xx in range(mesh.graph['bord_up'] + 1, mesh.graph['bord_down'] - 1)]
for xy in bord_nodes:
tgt_loc = None
if xy[0] == mesh.graph['bord_up']:
tgt_loc = (xy[0] + 1, xy[1])# (1, xy[1])
elif xy[0] == mesh.graph['bord_down'] - 1:
tgt_loc = (xy[0] - 1, xy[1]) # (H - 2, xy[1])
elif xy[1] == mesh.graph['bord_left']:
tgt_loc = (xy[0], xy[1] + 1)
elif xy[1] == mesh.graph['bord_right'] - 1:
tgt_loc = (xy[0], xy[1] - 1)
if tgt_loc is not None:
ne_infos = info_on_pix.get(tgt_loc)
if ne_infos is None:
import pdb; pdb.set_trace()
# if ne_infos is not None and len(ne_infos) == 1:
tgt_depth = ne_infos[0]['depth']
tgt_disp = ne_infos[0]['disp']
new_node = (xy[0], xy[1], tgt_depth)
src_node = (tgt_loc[0], tgt_loc[1], tgt_depth)
tgt_nes_loc = [(xx[0], xx[1]) \
for xx in mesh.neighbors(src_node)]
tgt_nes_loc = [(xx[0] - tgt_loc[0] + xy[0], xx[1] - tgt_loc[1] + xy[1]) for xx in tgt_nes_loc \
if abs(xx[0] - xy[0]) == 1 and abs(xx[1] - xy[1]) == 1]
tgt_nes_loc = [xx for xx in tgt_nes_loc if info_on_pix.get(xx) is not None]
tgt_nes_loc.append(tgt_loc)
# if (xy[0], xy[1]) == (559, 60):
# import pdb; pdb.set_trace()
if info_on_pix.get(xy) is not None and len(info_on_pix.get(xy)) > 0:
old_depth = info_on_pix[xy][0].get('depth')
old_node = (xy[0], xy[1], old_depth)
mesh.remove_edges_from([(old_ne, old_node) for old_ne in mesh.neighbors(old_node)])
mesh.add_edges_from([((zz[0], zz[1], info_on_pix[zz][0]['depth']), old_node) for zz in tgt_nes_loc])
mapping_dict = {old_node: new_node}
# if old_node[2] == new_node[2]:
# print("mapping_dict = ", mapping_dict)
info_on_pix, mesh = update_info(mapping_dict, info_on_pix, mesh)
else:
info_on_pix[xy] = []
info_on_pix[xy][0] = info_on_pix[tgt_loc][0]
info_on_pix['color'] = image[xy[0], xy[1]]
info_on_pix['old_color'] = image[xy[0], xy[1]]
mesh.add_node(new_node)
mesh.add_edges_from([((zz[0], zz[1], info_on_pix[zz][0]['depth']), new_node) for zz in tgt_nes_loc])
mesh.nodes[new_node]['far'] = None
mesh.nodes[new_node]['near'] = None
if mesh.nodes[src_node].get('far') is not None:
redundant_nodes = [ne for ne in mesh.nodes[src_node]['far'] if (ne[0], ne[1]) == xy]
[mesh.nodes[src_node]['far'].remove(aa) for aa in redundant_nodes]
if mesh.nodes[src_node].get('near') is not None:
redundant_nodes = [ne for ne in mesh.nodes[src_node]['near'] if (ne[0], ne[1]) == xy]
[mesh.nodes[src_node]['near'].remove(aa) for aa in redundant_nodes]
for xy in corner_nodes:
hx, hy = xy
four_nes = [xx for xx in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] if \
mesh.graph['bord_up'] <= xx[0] < mesh.graph['bord_down'] and \
mesh.graph['bord_left'] <= xx[1] < mesh.graph['bord_right']]
ne_nodes = []
ne_depths = []
for ne_loc in four_nes:
if info_on_pix.get(ne_loc) is not None:
ne_depths.append(info_on_pix[ne_loc][0]['depth'])
ne_nodes.append((ne_loc[0], ne_loc[1], info_on_pix[ne_loc][0]['depth']))
new_node = (xy[0], xy[1], float(np.mean(ne_depths)))
if info_on_pix.get(xy) is not None and len(info_on_pix.get(xy)) > 0:
old_depth = info_on_pix[xy][0].get('depth')
old_node = (xy[0], xy[1], old_depth)
mesh.remove_edges_from([(old_ne, old_node) for old_ne in mesh.neighbors(old_node)])
mesh.add_edges_from([(zz, old_node) for zz in ne_nodes])
mapping_dict = {old_node: new_node}
info_on_pix, mesh = update_info(mapping_dict, info_on_pix, mesh)
else:
info_on_pix[xy] = []
info_on_pix[xy][0] = info_on_pix[ne_loc[-1]][0]
info_on_pix['color'] = image[xy[0], xy[1]]
info_on_pix['old_color'] = image[xy[0], xy[1]]
mesh.add_node(new_node)
mesh.add_edges_from([(zz, new_node) for zz in ne_nodes])
mesh.nodes[new_node]['far'] = None
mesh.nodes[new_node]['near'] = None
for xy in bord_nodes + corner_nodes:
# if (xy[0], xy[1]) == (559, 60):
# import pdb; pdb.set_trace()
depth[xy[0], xy[1]] = abs(info_on_pix[xy][0]['depth'])
for xy in bord_nodes:
cur_node = (xy[0], xy[1], info_on_pix[xy][0]['depth'])
nes = mesh.neighbors(cur_node)
four_nes = set([(xy[0] + 1, xy[1]), (xy[0] - 1, xy[1]), (xy[0], xy[1] + 1), (xy[0], xy[1] - 1)]) - \
set([(ne[0], ne[1]) for ne in nes])
four_nes = [ne for ne in four_nes if mesh.graph['bord_up'] <= ne[0] < mesh.graph['bord_down'] and \
mesh.graph['bord_left'] <= ne[1] < mesh.graph['bord_right']]
four_nes = [(ne[0], ne[1], info_on_pix[(ne[0], ne[1])][0]['depth']) for ne in four_nes]
mesh.nodes[cur_node]['far'] = []
mesh.nodes[cur_node]['near'] = []
for ne in four_nes:
if abs(ne[2]) >= abs(cur_node[2]):
mesh.nodes[cur_node]['far'].append(ne)
else:
mesh.nodes[cur_node]['near'].append(ne)
return mesh, info_on_pix, depth
def get_union_size(mesh, dilate, *alls_cc):
all_cc = reduce(lambda x, y: x | y, [set()] + [*alls_cc])
min_x, min_y, max_x, max_y = mesh.graph['H'], mesh.graph['W'], 0, 0
H, W = mesh.graph['H'], mesh.graph['W']
for node in all_cc:
if node[0] < min_x:
min_x = node[0]
if node[0] > max_x:
max_x = node[0]
if node[1] < min_y:
min_y = node[1]
if node[1] > max_y:
max_y = node[1]
max_x = max_x + 1
max_y = max_y + 1
# mask_size = dilate_valid_size(mask_size, edge_dict['mask'], dilate=[20, 20])
osize_dict = dict()
osize_dict['x_min'] = max(0, min_x - dilate[0])
osize_dict['x_max'] = min(H, max_x + dilate[0])
osize_dict['y_min'] = max(0, min_y - dilate[1])
osize_dict['y_max'] = min(W, max_y + dilate[1])
return osize_dict
def incomplete_node(mesh, edge_maps, info_on_pix):
vis_map = np.zeros((mesh.graph['H'], mesh.graph['W']))
for node in mesh.nodes:
if mesh.nodes[node].get('synthesis') is not True:
connect_all_flag = False
nes = [xx for xx in mesh.neighbors(node) if mesh.nodes[xx].get('synthesis') is not True]
if len(nes) < 3 and 0 < node[0] < mesh.graph['H'] - 1 and 0 < node[1] < mesh.graph['W'] - 1:
if len(nes) <= 1:
connect_all_flag = True
else:
dan_ne_node_a = nes[0]
dan_ne_node_b = nes[1]
if abs(dan_ne_node_a[0] - dan_ne_node_b[0]) > 1 or \
abs(dan_ne_node_a[1] - dan_ne_node_b[1]) > 1:
connect_all_flag = True
if connect_all_flag == True:
vis_map[node[0], node[1]] = len(nes)
four_nes = [(node[0] - 1, node[1]), (node[0] + 1, node[1]), (node[0], node[1] - 1), (node[0], node[1] + 1)]
for ne in four_nes:
for info in info_on_pix[(ne[0], ne[1])]:
ne_node = (ne[0], ne[1], info['depth'])
if info.get('synthesis') is not True and mesh.has_node(ne_node):
mesh.add_edge(node, ne_node)
break
return mesh
def edge_inpainting(edge_id, context_cc, erode_context_cc, mask_cc, edge_cc, extend_edge_cc,
mesh, edge_map, edge_maps_with_id, config, union_size, depth_edge_model, inpaint_iter):
edge_dict = get_edge_from_nodes(context_cc, erode_context_cc, mask_cc, edge_cc, extend_edge_cc,
mesh.graph['H'], mesh.graph['W'], mesh)
edge_dict['edge'], end_depth_maps, _ = \
filter_irrelevant_edge_new(edge_dict['self_edge'] + edge_dict['comp_edge'],
edge_map,
edge_maps_with_id,
edge_id,
edge_dict['context'],
edge_dict['depth'], mesh, context_cc | erode_context_cc, spdb=True)
patch_edge_dict = dict()
patch_edge_dict['mask'], patch_edge_dict['context'], patch_edge_dict['rgb'], \
patch_edge_dict['disp'], patch_edge_dict['edge'] = \
crop_maps_by_size(union_size, edge_dict['mask'], edge_dict['context'],
edge_dict['rgb'], edge_dict['disp'], edge_dict['edge'])
tensor_edge_dict = convert2tensor(patch_edge_dict)
if require_depth_edge(patch_edge_dict['edge'], patch_edge_dict['mask']) and inpaint_iter == 0:
with torch.no_grad():
device = config["gpu_ids"] if isinstance(config["gpu_ids"], int) and config["gpu_ids"] >= 0 else "cpu"
depth_edge_output = depth_edge_model.forward_3P(tensor_edge_dict['mask'],
tensor_edge_dict['context'],
tensor_edge_dict['rgb'],
tensor_edge_dict['disp'],
tensor_edge_dict['edge'],
unit_length=128,
cuda=device)
depth_edge_output = depth_edge_output.cpu()
tensor_edge_dict['output'] = (depth_edge_output > config['ext_edge_threshold']).float() * tensor_edge_dict['mask'] + tensor_edge_dict['edge']
else:
tensor_edge_dict['output'] = tensor_edge_dict['edge']
depth_edge_output = tensor_edge_dict['edge'] + 0
patch_edge_dict['output'] = tensor_edge_dict['output'].squeeze().data.cpu().numpy()
edge_dict['output'] = np.zeros((mesh.graph['H'], mesh.graph['W']))
edge_dict['output'][union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
patch_edge_dict['output']
return edge_dict, end_depth_maps
def depth_inpainting(context_cc, extend_context_cc, erode_context_cc, mask_cc, mesh, config, union_size, depth_feat_model, edge_output, given_depth_dict=False, spdb=False):
if given_depth_dict is False:
depth_dict = get_depth_from_nodes(context_cc | extend_context_cc, erode_context_cc, mask_cc, mesh.graph['H'], mesh.graph['W'], mesh, config['log_depth'])
if edge_output is not None:
depth_dict['edge'] = edge_output
else:
depth_dict = given_depth_dict
patch_depth_dict = dict()
patch_depth_dict['mask'], patch_depth_dict['context'], patch_depth_dict['depth'], \
patch_depth_dict['zero_mean_depth'], patch_depth_dict['edge'] = \
crop_maps_by_size(union_size, depth_dict['mask'], depth_dict['context'],
depth_dict['real_depth'], depth_dict['zero_mean_depth'], depth_dict['edge'])
tensor_depth_dict = convert2tensor(patch_depth_dict)
resize_mask = open_small_mask(tensor_depth_dict['mask'], tensor_depth_dict['context'], 3, 41)
with torch.no_grad():
device = config["gpu_ids"] if isinstance(config["gpu_ids"], int) and config["gpu_ids"] >= 0 else "cpu"
depth_output = depth_feat_model.forward_3P(resize_mask,
tensor_depth_dict['context'],
tensor_depth_dict['zero_mean_depth'],
tensor_depth_dict['edge'],
unit_length=128,
cuda=device)
depth_output = depth_output.cpu()
tensor_depth_dict['output'] = torch.exp(depth_output + depth_dict['mean_depth']) * \
tensor_depth_dict['mask'] + tensor_depth_dict['depth']
patch_depth_dict['output'] = tensor_depth_dict['output'].data.cpu().numpy().squeeze()
depth_dict['output'] = np.zeros((mesh.graph['H'], mesh.graph['W']))
depth_dict['output'][union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
patch_depth_dict['output']
depth_output = depth_dict['output'] * depth_dict['mask'] + depth_dict['depth'] * depth_dict['context']
depth_output = smooth_cntsyn_gap(depth_dict['output'].copy() * depth_dict['mask'] + depth_dict['depth'] * depth_dict['context'],
depth_dict['mask'], depth_dict['context'],
init_mask_region=depth_dict['mask'])
if spdb is True:
f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True);
ax1.imshow(depth_output * depth_dict['mask'] + depth_dict['depth']); ax2.imshow(depth_dict['output'] * depth_dict['mask'] + depth_dict['depth']); plt.show()
import pdb; pdb.set_trace()
depth_dict['output'] = depth_output * depth_dict['mask'] + depth_dict['depth'] * depth_dict['context']
return depth_dict
def update_info(mapping_dict, info_on_pix, *meshes):
rt_meshes = []
for mesh in meshes:
rt_meshes.append(relabel_node(mesh, mesh.nodes, [*mapping_dict.keys()][0], [*mapping_dict.values()][0]))
x, y, _ = [*mapping_dict.keys()][0]
info_on_pix[(x, y)][0]['depth'] = [*mapping_dict.values()][0][2]
return [info_on_pix] + rt_meshes
def build_connection(mesh, cur_node, dst_node):
if (abs(cur_node[0] - dst_node[0]) + abs(cur_node[1] - dst_node[1])) < 2:
mesh.add_edge(cur_node, dst_node)
if abs(cur_node[0] - dst_node[0]) > 1 or abs(cur_node[1] - dst_node[1]) > 1:
return mesh
ne_nodes = [*mesh.neighbors(cur_node)].copy()
for ne_node in ne_nodes:
if mesh.has_edge(ne_node, dst_node) or ne_node == dst_node:
continue
else:
mesh = build_connection(mesh, ne_node, dst_node)
return mesh
def recursive_add_edge(edge_mesh, mesh, info_on_pix, cur_node, mark):
ne_nodes = [(x[0], x[1]) for x in edge_mesh.neighbors(cur_node)]
for node_xy in ne_nodes:
node = (node_xy[0], node_xy[1], info_on_pix[node_xy][0]['depth'])
if mark[node[0], node[1]] != 3:
continue
else:
mark[node[0], node[1]] = 0
mesh.remove_edges_from([(xx, node) for xx in mesh.neighbors(node)])
mesh = build_connection(mesh, cur_node, node)
re_info = dict(depth=0, count=0)
for re_ne in mesh.neighbors(node):
re_info['depth'] += re_ne[2]
re_info['count'] += 1.
try:
re_depth = re_info['depth'] / re_info['count']
except:
re_depth = node[2]
re_node = (node_xy[0], node_xy[1], re_depth)
mapping_dict = {node: re_node}
info_on_pix, edge_mesh, mesh = update_info(mapping_dict, info_on_pix, edge_mesh, mesh)
edge_mesh, mesh, mark, info_on_pix = recursive_add_edge(edge_mesh, mesh, info_on_pix, re_node, mark)
return edge_mesh, mesh, mark, info_on_pix
def resize_for_edge(tensor_dict, largest_size):
resize_dict = {k: v.clone() for k, v in tensor_dict.items()}
frac = largest_size / np.array([*resize_dict['edge'].shape[-2:]]).max()
if frac < 1:
resize_mark = torch.nn.functional.interpolate(torch.cat((resize_dict['mask'],
resize_dict['context']),
dim=1),
scale_factor=frac,
mode='bilinear')
resize_dict['mask'] = (resize_mark[:, 0:1] > 0).float()
resize_dict['context'] = (resize_mark[:, 1:2] == 1).float()
resize_dict['context'][resize_dict['mask'] > 0] = 0
resize_dict['edge'] = torch.nn.functional.interpolate(resize_dict['edge'],
scale_factor=frac,
mode='bilinear')
resize_dict['edge'] = (resize_dict['edge'] > 0).float()
resize_dict['edge'] = resize_dict['edge'] * resize_dict['context']
resize_dict['disp'] = torch.nn.functional.interpolate(resize_dict['disp'],
scale_factor=frac,
mode='nearest')
resize_dict['disp'] = resize_dict['disp'] * resize_dict['context']
resize_dict['rgb'] = torch.nn.functional.interpolate(resize_dict['rgb'],
scale_factor=frac,
mode='bilinear')
resize_dict['rgb'] = resize_dict['rgb'] * resize_dict['context']
return resize_dict
def get_map_from_nodes(nodes, height, width):
omap = np.zeros((height, width))
for n in nodes:
omap[n[0], n[1]] = 1
return omap
def get_map_from_ccs(ccs, height, width, condition_input=None, condition=None, real_id=False, id_shift=0):
if condition is None:
condition = lambda x, condition_input: True
if real_id is True:
omap = np.zeros((height, width)) + (-1) + id_shift
else:
omap = np.zeros((height, width))
for cc_id, cc in enumerate(ccs):
for n in cc:
if condition(n, condition_input):
if real_id is True:
omap[n[0], n[1]] = cc_id + id_shift
else:
omap[n[0], n[1]] = 1
return omap
def revise_map_by_nodes(nodes, imap, operation, limit_constr=None):
assert operation == '+' or operation == '-', "Operation must be '+' (union) or '-' (exclude)"
omap = copy.deepcopy(imap)
revise_flag = True
if operation == '+':
for n in nodes:
omap[n[0], n[1]] = 1
if limit_constr is not None and omap.sum() > limit_constr:
omap = imap
revise_flag = False
elif operation == '-':
for n in nodes:
omap[n[0], n[1]] = 0
if limit_constr is not None and omap.sum() < limit_constr:
omap = imap
revise_flag = False
return omap, revise_flag
def repaint_info(mesh, cc, x_anchor, y_anchor, source_type):
if source_type == 'rgb':
feat = np.zeros((3, x_anchor[1] - x_anchor[0], y_anchor[1] - y_anchor[0]))
else:
feat = np.zeros((1, x_anchor[1] - x_anchor[0], y_anchor[1] - y_anchor[0]))
for node in cc:
if source_type == 'rgb':
feat[:, node[0] - x_anchor[0], node[1] - y_anchor[0]] = np.array(mesh.nodes[node]['color']) / 255.
elif source_type == 'd':
feat[:, node[0] - x_anchor[0], node[1] - y_anchor[0]] = abs(node[2])
return feat
def get_context_from_nodes(mesh, cc, H, W, source_type=''):
if 'rgb' in source_type or 'color' in source_type:
feat = np.zeros((H, W, 3))
else:
feat = np.zeros((H, W))
context = np.zeros((H, W))
for node in cc:
if 'rgb' in source_type or 'color' in source_type:
feat[node[0], node[1]] = np.array(mesh.nodes[node]['color']) / 255.
context[node[0], node[1]] = 1
else:
feat[node[0], node[1]] = abs(node[2])
return feat, context
def get_mask_from_nodes(mesh, cc, H, W):
mask = np.zeros((H, W))
for node in cc:
mask[node[0], node[1]] = abs(node[2])
return mask
def get_edge_from_nodes(context_cc, erode_context_cc, mask_cc, edge_cc, extend_edge_cc, H, W, mesh):
context = np.zeros((H, W))
mask = np.zeros((H, W))
rgb = np.zeros((H, W, 3))
disp = np.zeros((H, W))
depth = np.zeros((H, W))
real_depth = np.zeros((H, W))
edge = np.zeros((H, W))
comp_edge = np.zeros((H, W))
fpath_map = np.zeros((H, W)) - 1
npath_map = np.zeros((H, W)) - 1
near_depth = np.zeros((H, W))
for node in context_cc:
rgb[node[0], node[1]] = np.array(mesh.nodes[node]['color'])
disp[node[0], node[1]] = mesh.nodes[node]['disp']
depth[node[0], node[1]] = node[2]
context[node[0], node[1]] = 1
for node in erode_context_cc:
rgb[node[0], node[1]] = np.array(mesh.nodes[node]['color'])
disp[node[0], node[1]] = mesh.nodes[node]['disp']
depth[node[0], node[1]] = node[2]
context[node[0], node[1]] = 1
rgb = rgb / 255.
disp = np.abs(disp)
disp = disp / disp.max()
real_depth = depth.copy()
for node in context_cc:
if mesh.nodes[node].get('real_depth') is not None:
real_depth[node[0], node[1]] = mesh.nodes[node]['real_depth']
for node in erode_context_cc:
if mesh.nodes[node].get('real_depth') is not None:
real_depth[node[0], node[1]] = mesh.nodes[node]['real_depth']
for node in mask_cc:
mask[node[0], node[1]] = 1
near_depth[node[0], node[1]] = node[2]
for node in edge_cc:
edge[node[0], node[1]] = 1
for node in extend_edge_cc:
comp_edge[node[0], node[1]] = 1
rt_dict = {'rgb': rgb, 'disp': disp, 'depth': depth, 'real_depth': real_depth, 'self_edge': edge, 'context': context,
'mask': mask, 'fpath_map': fpath_map, 'npath_map': npath_map, 'comp_edge': comp_edge, 'valid_area': context + mask,
'near_depth': near_depth}
return rt_dict
def get_depth_from_maps(context_map, mask_map, depth_map, H, W, log_depth=False):
context = context_map.astype(np.uint8)
mask = mask_map.astype(np.uint8).copy()
depth = np.abs(depth_map)
real_depth = depth.copy()
zero_mean_depth = np.zeros((H, W))
if log_depth is True:
log_depth = np.log(real_depth + 1e-8) * context