-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathconvert_json_to_pkl.py
51 lines (42 loc) · 1.32 KB
/
convert_json_to_pkl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Convert detectron2 json result to iCAN pkl file
import os
import json
import pickle
import numpy as np
path = 'cascade_rcnn_X152_FPN_lr1e-3'
full_path = 'coco_instances_results_X152.json'
data = json.load(open(full_path))
# Create a mapping from all 91 to 80 training classes
id2train_id = {}
with open('coco_labels_paper.txt') as f:
names = f.read().rstrip().split('\n')
with open('coco_train_labels.txt') as f:
train_names = f.read().rstrip().split('\n')
train_id = 1
for id, name in enumerate(names):
if name in train_names:
id2train_id[id+1] = train_id
train_id += 1
out_dict = dict()
for det in data:
im_id = det['image_id']
cat_id = det['category_id']
cat_id = id2train_id[cat_id]
bbox = np.array(det['bbox']).astype(np.float32) # seems to be xywh format?
bbox[2] = bbox[0]+bbox[2]
bbox[3] = bbox[1]+bbox[3]
score = np.array(det['score']).astype(np.float32)
if im_id not in out_dict:
out_dict[im_id] = []
new_item = []
new_item.append(im_id)
if cat_id == 1:
new_item.append('Human')
else:
new_item.append('Object')
new_item.append(bbox)
new_item.append(np.nan)
new_item.append(cat_id)
new_item.append(score)
out_dict[im_id].append(new_item)
pickle.dump(out_dict, open('Test_HICO_{}.pkl'.format(path), 'wb'))