-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdawgbuilder.py
945 lines (817 loc) · 35.2 KB
/
dawgbuilder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
#!/usr/bin/env python3
"""
DAWG dictionary builder
Copyright (C) 2023 Miðeind ehf.
Original author: Vilhjálmur Þorsteinsson
DawgBuilder uses a Directed Acyclic Word Graph (DAWG)
to store a large set of words in an efficient structure in terms
of storage and speed.
The DAWG implementation is partially based on Steve Hanov's work
(see http://stevehanov.ca/blog/index.php?id=115), which references
a paper by Daciuk et al (http://www.aclweb.org/anthology/J00-1002.pdf).
This implementation compresses node sequences with single edges between
them into single multi-letter edges. It also removes redundant edges
to "pure" final nodes.
DawgBuilder reads a set of text input files containing plain words,
one word per line, and outputs a text file with a compressed
graph. This file is read by the DawgDictionary class; see
dawgdictionary.py
The output file is structured as a sequence of lines. Each line
represents a node in the graph and contains information about
outgoing edges from the node. Nodes are referred to by their
line number, where the starting root node is in line 1 and subsequent
nodes are numbered starting with 2.
A node (line) is represented as follows:
['|']['_' prefix ':' nextnode]*
If the node is a final node (i.e. a valid word is completed at
the node), the first character in the line is
a vertical bar ('|') followed by an underscore.
The rest of the line is a sequence of edges where each edge
is described by a prefix string followed by a colon (':')
and the line number of the node following that edge. Edges are
separated by underscores ('_'). The prefix string can contain
embedded vertical bars indicating that the previous character was
a final character in a valid word.
Example:
The following input word list (cf. http://tinyurl.com/kvhbyo2):
car
cars
cat
cats
do
dog
dogs
done
ear
ears
eat
eats
generates this output graph:
do:3_ca:2_ea:2
t|s:0_r|s:0
|_g|s:0_ne:0
The root node in line 1 has three outgoing edges, "do" to node 3, "ca" to node 2, and "ea" to node 2.
Node 2 (in line 2) has two edges, "t|s" to node 0 and "r|s" to node 0. This means that "cat" and
"cats", "eat" and "eats" are valid words (on the first edge), as well as "car" and "cars",
"ear" and "ears" (on the second edge).
Node 3 (in line 3) is itself a final node, denoted by the vertical bar at the start of the line.
Thus, "do" (coming in from the root) is a valid word, but so are "dog" and "dogs" (on the first edge)
as well as "done" (on the second edge).
Dictionary structure:
Suppose the dictionary contains two words, 'word' and 'wolf'.
This is represented by Python data structures as follows:
root _Dawg -> {
'w': _DawgNode(final=False, edges -> {
'o': _DawgNode(final=False, edges -> {
'r': _DawgNode(final=False, edges -> {
'd': _DawgNode(final=True, edges -> {})
}),
'l': _DawgNode(final=False, edges -> {
'f': _DawgNode(final=True, edges -> {})
})
})
})
}
"""
import os
import sys
import codecs
import time
import binascii
import struct
import io
from dawgdictionary import DawgDictionary
# The DAWG builder uses the collation (sorting) given by Alphabet.sortkey
# This is by default the Icelandic sorting order
from languages import Alphabet
MAXLEN = 48 # Longest possible word to be processed
SCRABBLE_MAXLEN = 15 # Longest possible word in a Scrabble database
COMMON_MAXLEN = 12 # Longest words in common word list used by weakest robot
class _DawgNode:
""" A _DawgNode is a node in a Directed Acyclic Word Graph (DAWG).
It contains:
* a node identifier (a simple unique sequence number);
* a dictionary of edges (children) where each entry has a prefix
(following letter(s)) together with its child _DawgNode;
* and a Bool (final) indicating whether this node in the graph
also marks the end of a legal word.
A _DawgNode has a string representation which can be hashed to
determine whether it is identical to a previously encountered node,
i.e. whether it has the same final flag and the same edges with
prefixes leading to the same child nodes. This assumes
that the child nodes have already been subjected to the same
test, i.e. whether they are identical to previously encountered
nodes and, in that case, modified to point to the previous, identical
subgraph. Each graph layer can thus depend on the (shallow) comparisons
made in previous layers and deep comparisons are not necessary. This
is an important optimization when building the graph.
"""
# Running count of node identifiers
# Zero is reserved for "None"
_nextid = 1
@staticmethod
def sort_by_prefix(l):
""" Return a list of (prefix, node) tuples sorted by prefix """
return sorted(l, key=lambda x: Alphabet.sortkey(x[0]))
@staticmethod
def stringify_edges(edges):
""" Utility function to create a compact descriptor string and hashable key for node edges """
s = [
prefix + ":" + ("0" if node is None else str(node.id))
for prefix, node in _DawgNode.sort_by_prefix(edges.items())
]
return "_".join(s)
def __init__(self):
self.id = _DawgNode._nextid
_DawgNode._nextid += 1
self.edges = dict()
self.final = False
self._strng = None # Cached string representation of this node
self._hash = None # Hash of the final flag and a shallow traversal of the edges
def __str__(self):
""" Return a string representation of this node, cached if possible """
if self._strng is None:
# We don't have a cached string representation: create it
edges = _DawgNode.stringify_edges(self.edges)
self._strng = "|_" + edges if self.final else edges
return self._strng
def __hash__(self):
""" Return a hash of this node, cached if possible """
if self._hash is None:
# We don't have a cached hash: create it
self._hash = self.__str__().__hash__()
return self._hash
def __eq__(self, other):
""" Use string equality based on the string representation of nodes """
return self.__str__() == other.__str__()
def reset_id(self, newid):
""" Set a new id number for this node. This forces a reset of the cached data. """
self.id = newid
self._strng = None
self._hash = None
class _Dawg:
def __init__(self):
self._lastword = ""
self._lastlen = 0
self._root = dict()
# Initialize empty list of starting dictionaries
self._dicts = [None for _ in range(MAXLEN)]
self._dicts[0] = self._root
# Initialize the result list of unique nodes
# Keep a list of the values inserted too. Note that using
# OrderedDict raises an exception while enumerating the values
# (presumably because the dictionary has been altered).
self._unique_nodes = dict()
def _collapse_branch(self, parent, prefix, node):
""" Attempt to collapse a single branch of the tree """
di = node.edges
assert di is not None
# If the node has no outgoing edges, it must be a final node.
# Optimize and reduce graph clutter by making the parent
# point to None instead.
if not di:
assert node.final
# We don't need to put a vertical bar (final marker) at the end of the prefix; it's implicit
parent[prefix] = None
return
# Attempt to collapse simple chains of single-letter nodes
# with single outgoing edges into a single edge with a multi-letter prefix.
# If any of the chained nodes has a final marker, add a vertical bar '|' to
# the prefix instead.
if len(di) == 1:
# Only one child: we can collapse
lastd = None
tail = None
for ch, nx in di.items():
# There will only be one iteration of this loop
tail = ch
lastd = nx
# Delete the child node and put a string of prefix characters into the root instead
del parent[prefix]
if node.final:
tail = "|" + tail
prefix += tail
parent[prefix] = lastd
node = lastd
# If a node with the same signature (key) has already been generated,
# i.e. having the same final flag and the same edges leading to the same
# child nodes, replace the edge leading to this node with an edge
# to the previously generated node.
if node in self._unique_nodes:
# Signature matches a previously generated node: replace the edge
parent[prefix] = self._unique_nodes[node]
else:
# This is a new, unique signature: store it in the dictionary of unique nodes
self._unique_nodes[node] = node
def _collapse(self, edges):
""" Collapse and optimize the edges in the parent dict """
# Iterate through the letter position and
# attempt to collapse all "simple" branches from it
if edges:
# NOTE! Be careful here, since the underlying dict may
# be changing under our feet. The list() constructor is
# thus required.
for letter, node in list(edges.items()):
if node:
self._collapse_branch(edges, letter, node)
def _collapse_to(self, divergence):
""" Collapse the tree backwards from the point of divergence """
j = self._lastlen
while j > divergence:
if self._dicts[j]:
self._collapse(self._dicts[j])
self._dicts[j] = None
j -= 1
def add_word(self, wrd):
""" Add a word to the DAWG.
Words are expected to arrive in sorted order.
As an example, we may have these three words arriving in sequence:
abbadísar
abbadísarinnar [extends last word by 5 letters]
abbadísarstofa [backtracks from last word by 5 letters]
"""
# Sanity check: make sure the word is not too long
lenword = len(wrd)
if lenword >= MAXLEN:
raise ValueError(
"Word exceeds maximum length of {0} letters".format(MAXLEN)
)
# First see how many letters we have in common with the
# last word we processed
i = 0
while i < lenword and i < self._lastlen and wrd[i] == self._lastword[i]:
i += 1
# Start from the point of last divergence in the tree
# In the case of backtracking, collapse all previous outstanding branches
self._collapse_to(i)
# Add the (divergent) rest of the word
d = self._dicts[i] # Note that self._dicts[0] is self._root
nd = None
while i < lenword:
nd = _DawgNode()
# Add a new starting letter to the working dictionary,
# with a fresh node containing an empty dictionary of subsequent letters
d[wrd[i]] = nd
d = nd.edges
i += 1
self._dicts[i] = d
# We are at the node for the final letter in the word: mark it as such
if nd is not None:
nd.final = True
# Save our position to optimize the handling of the next word
self._lastword = wrd
self._lastlen = lenword
def finish(self):
""" Complete the optimization of the tree """
self._collapse_to(0)
self._lastword = ""
self._lastlen = 0
self._collapse(self._root)
# Renumber the nodes for a tidier graph and more compact output
# 1 is the line number of the root in text output files, so we start with 2
ix = 2
for n in self._unique_nodes.values():
if n is not None:
n.reset_id(ix)
ix += 1
def _dump_level(self, level, d):
""" Dump a level of the tree and continue into sublevels by recursion """
for ch, nx in d.items():
s = " " * level + ch
if nx and nx.final:
s += "|"
s += " " * (50 - len(s))
s += nx.__str__()
print(s)
if nx and nx.edges:
self._dump_level(level + 1, nx.edges)
def dump(self):
""" Write a human-readable text representation of the DAWG to the standard output """
self._dump_level(0, self._root)
print(
"Total of {0} nodes and {1} edges with {2} prefix characters".format(
self.num_unique_nodes(), self.num_edges(), self.num_edge_chars()
)
)
for n in self._unique_nodes.values():
if n is not None:
# We don't use ix for the time being
print("Node {0}{1}".format(n.id, "|" if n.final else ""))
for prefix, nd in n.edges.items():
print(
" Edge {0} to node {1}".format(
prefix, 0 if nd is None else nd.id
)
)
def num_unique_nodes(self):
""" Count the total number of unique nodes in the graph """
return len(self._unique_nodes)
def num_edges(self):
""" Count the total number of edges between unique nodes in the graph """
edges = 0
for n in self._unique_nodes.values():
if n is not None:
edges += len(n.edges)
return edges
def num_edge_chars(self):
""" Count the total number of edge prefix letters in the graph """
chars = 0
for n in self._unique_nodes.values():
if n is not None:
for prefix in n.edges:
# Add the length of all prefixes to the edge, minus the vertical bar
# '|' which indicates a final character within the prefix
chars += len(prefix) - prefix.count("|")
return chars
def write_packed(self, packer):
""" Write the optimized DAWG to a packer """
packer.start(len(self._root))
# Start with the root edges
sortfunc = _DawgNode.sort_by_prefix
for prefix, nd in sortfunc(self._root.items()):
if nd is None:
packer.edge(0, prefix)
else:
packer.edge(nd.id, prefix)
for node in self._unique_nodes.values():
if node is not None:
packer.node_start(node.id, node.final, len(node.edges))
for prefix, nd in sortfunc(node.edges.items()):
if nd is None:
packer.edge(0, prefix)
else:
packer.edge(nd.id, prefix)
packer.node_end(node.id)
packer.finish()
def write_text(self, stream):
""" Write the optimized DAWG to a text stream """
# +1 to include the root in the node count
print(
"Output graph has {0} nodes"
.format(len(self._unique_nodes))
)
# We don't have to write node ids since they correspond to line numbers.
# The root is always in the first line and the first node after the root has id 2.
# Start with the root edges
stream.write(_DawgNode.stringify_edges(self._root) + "\n")
for node in self._unique_nodes.values():
if node is not None:
stream.write(node.__str__() + "\n")
class _BinaryDawgPacker:
""" _BinaryDawgPacker packs the DAWG data to a byte stream.
!!! This is not fully implemented and not currently used by the
!!! DawgDictionary class in dawgdictionary.py
The stream format is as follows:
For each node:
BYTE Node header
[feeeeeee]
f = final bit
eeee = number of edges
For each edge out of a node:
BYTE Prefix header
[ftnnnnnn]
If t == 1 then
f = final bit of single prefix character
nnnnnn = single prefix character,
coded as an index into AÁBDÐEÉFGHIÍJKLMNOÓPRSTUÚVXYÝÞÆÖ
else
00nnnnnn = number of prefix characters following
n * BYTE Prefix characters
[fccccccc]
f = final bit
ccccccc = prefix character,
coded as an index into AÁBDÐEÉFGHIÍJKLMNOÓPRSTUÚVXYÝÞÆÖ
DWORD Offset of child node
"""
CODING_UCASE = Alphabet.upper
CODING_LCASE = Alphabet.order
def __init__(self, stream):
self._stream = stream
self._byte_struct = struct.Struct("<B")
self._loc_struct = struct.Struct("<L")
# _locs is a dict of already written nodes and their stream locations
self._locs = dict()
# _fixups is a dict of node ids and file positions where the
# node id has been referenced without knowing where the node is
# located
self._fixups = dict()
def start(self, num_root_edges):
# The stream starts off with a single byte containing the
# number of root edges
self._stream.write(self._byte_struct.pack(num_root_edges))
def node_start(self, ident, final, num_edges):
pos = self._stream.tell()
if ident in self._fixups:
# We have previously output references to this node without
# knowing its location: fix'em now
for fix in self._fixups[ident]:
self._stream.seek(fix)
self._stream.write(self._loc_struct.pack(pos))
self._stream.seek(pos)
del self._fixups[ident]
# Remember where we put this node
self._locs[ident] = pos
self._stream.write(
self._byte_struct.pack((0x80 if final else 0x00) | (num_edges & 0x7F))
)
def node_end(self, ident):
pass
def edge(self, ident, prefix):
b = []
last = None
for c in prefix:
if c == u"|":
last |= 0x80
else:
if last is not None:
b.append(last)
try:
last = _BinaryDawgPacker.CODING_LCASE.index(c)
except ValueError:
last = _BinaryDawgPacker.CODING_UCASE.index(c)
b.append(last)
if len(b) == 1:
# Save space on single-letter prefixes
self._stream.write(self._byte_struct.pack(b[0] | 0x40))
else:
self._stream.write(self._byte_struct.pack(len(b) & 0x3F))
for by in b:
self._stream.write(self._byte_struct.pack(by))
if ident == 0:
self._stream.write(self._loc_struct.pack(0))
elif ident in self._locs:
# We've already written the node and know where it is: write its location
self._stream.write(self._loc_struct.pack(self._locs[ident]))
else:
# This is a forward reference to a node we haven't written yet:
# reserve space for the node location and add a fixup
pos = self._stream.tell()
self._stream.write(
self._loc_struct.pack(0xFFFFFFFF)
) # Temporary - will be overwritten
if ident not in self._fixups:
self._fixups[ident] = []
self._fixups[ident].append(pos)
def finish(self):
# Clear the temporary fixup stuff from memory
self._locs = dict()
self._fixups = dict()
def dump(self):
buf = self._stream.getvalue()
print("Total of {0} bytes".format(len(buf)))
s = binascii.hexlify(buf)
BYTES_PER_LINE = 16
CHARS_PER_LINE = BYTES_PER_LINE * 2
i = 0
addr = 0
lens = len(s)
while i < lens:
line = s[i : i + CHARS_PER_LINE]
print(
"{0:08x}: {1}".format(
addr,
" ".join([line[j : j + 2] for j in range(0, len(line) - 1, 2)]),
)
)
i += CHARS_PER_LINE
addr += BYTES_PER_LINE
class DawgBuilder:
""" Creates a DAWG from word lists and writes the resulting
graph to binary or text files.
The word lists are assumed to be pre-sorted in ascending
lexicographic order. They are automatically merged during
processing to appear as one aggregated and sorted word list.
"""
def __init__(self):
self._dawg = None
class _InFile(object):
""" InFile represents a single sorted input file. """
def __init__(self, relpath, fname):
self._eof = False
self._nxt = None
self._key = None # Sortkey for self._nxt
fpath = os.path.abspath(os.path.join(relpath, fname))
self._fin = codecs.open(fpath, mode="r", encoding="utf-8")
print("Opened input file {0}".format(fpath))
self._init()
def _init(self):
# Read the first word from the file to initialize the iteration
self.read_word()
def read_word(self):
""" Read lines until we have a legal word or EOF """
while True:
try:
line = next(self._fin)
except StopIteration:
# We're done with this file
self._eof = True
return False
if line.endswith("\r\n"):
# Cut off trailing CRLF (Windows-style)
line = line[0:-2]
elif line.endswith("\n"):
# Cut off trailing LF (Unix-style)
line = line[0:-1]
if line and len(line) < MAXLEN:
# Valid word
self._nxt = line
self._key = Alphabet.sortkey(line)
return True
def next_word(self):
""" Returns the next available word from this input file """
return None if self._eof else self._nxt
def next_key(self):
""" Returns the sort key of the next available word from this input file """
return None if self._eof else self._key
def has_word(self):
""" True if a word is available, or False if EOF has been reached """
return not self._eof
def close(self):
""" Close the associated file, if it is still open """
if self._fin is not None:
self._fin.close()
self._fin = None
class _InFileToBeSorted(_InFile):
""" InFileToBeSorted represents an input file that should be pre-sorted in memory """
def __init__(self, relpath, fname):
# Call base class constructor
super(DawgBuilder._InFileToBeSorted, self).__init__(relpath, fname)
def _init(self):
""" Read the entire file and pre-sort it """
self._list = []
self._index = 0
try:
for line in self._fin:
if line.endswith("\r\n"):
# Cut off trailing CRLF (Windows-style)
line = line[0:-2]
elif line.endswith("\n"):
# Cut off trailing LF (Unix-style)
line = line[0:-1]
if line and len(line) < MAXLEN:
# Valid word
self._list.append(line)
except StopIteration:
pass
finally:
self._fin.close()
self._fin = None
self._len = len(self._list)
self._list.sort(key=Alphabet.sortkey)
self.read_word()
def read_word(self):
if self._index >= self._len:
self._eof = True
return False
self._nxt = self._list[self._index]
self._key = Alphabet.sortkey(self._nxt)
self._index += 1
return True
def close(self):
""" Close the associated file, if it is still open """
pass
def _load(self, relpath, inputs, removals, word_filter):
""" Load word lists into the DAWG from one or more static text files,
assumed to be located in the relpath subdirectory.
The text files should contain one word per line,
encoded in UTF-8 format. Lines may end with CR/LF or LF only.
Upper or lower case should be consistent throughout.
All lower case is preferred. The words should appear in
ascending sort order within each file. The input files will
be merged in sorted order in the load process. Words found
in the removals file will be removed from the output.
"""
self._dawg = _Dawg()
# Total number of words read from input files
incount = 0
# Total number of words written to output file
# (may be less than incount because of filtering or duplicates)
outcount = 0
# Total number of duplicate words found in input files
duplicates = 0
# Count removed words due to the removed word list
removed = 0
# Enforce strict ascending lexicographic order
lastword = None
lastkey = None
# Open the input files. The first (main) input file is assumed
# to be pre-sorted. Other input files are sorted in memory before
# being used.
infiles = [
DawgBuilder._InFile(relpath, f)
if ix == 0
else DawgBuilder._InFileToBeSorted(relpath, f)
for ix, f in enumerate(inputs)
]
# Open the removal file, if any
if removals is None:
removal = None
else:
removal = DawgBuilder._InFileToBeSorted(relpath, removals)
remove_key = None if removal is None else removal.next_key()
# Merge the inputs
while True:
smallest = None
# Find the smallest next word among the input files
for f in infiles:
if f.has_word():
if smallest is None:
smallest = f
key_smallest = smallest.next_key()
else:
# Use the sort ordering of the current locale to compare words
key_f = f.next_key()
if key_f == key_smallest:
# We have the same word in two files: make sure we don't add it twice
f.read_word()
incount += 1
duplicates += 1
elif key_f < key_smallest:
# New smallest word
smallest = f
key_smallest = key_f
if smallest is None:
# All files exhausted: we're done
break
# We have the smallest word
word = smallest.next_word()
key = key_smallest
incount += 1
if lastkey and lastkey >= key:
# Something appears to be wrong with the input sort order.
# If it's a duplicate, we don't mind too much, but if it's out
# of order, display a warning
if lastkey > key:
print(
'Warning: input files should be in ascending order, but "{0}" > "{1}"'.format(
lastword, word
)
)
else:
# Identical to previous word
duplicates += 1
elif word_filter is None or word_filter(word):
# This word passes the filter: check the removal list, if any
while remove_key is not None and remove_key < key:
# Skip past words in the removal file as needed
removal.read_word()
remove_key = removal.next_key()
if remove_key is not None and remove_key == key:
# Found a word to be removed
removal.read_word()
remove_key = removal.next_key()
removed += 1
else:
# Not a word to be removed: add it to the graph
self._dawg.add_word(word)
outcount += 1
lastword = word
lastkey = key
if incount % 10000 == 0:
# Progress indicator
print("{0}...".format(incount), end="\r")
sys.stdout.flush()
# Advance to the next word in the file we read from
smallest.read_word()
# Done merging: close all files
for f in infiles:
assert not f.has_word()
f.close()
# Complete and clean up
self._dawg.finish()
print(
"Finished loading {0} words, output {1} words, {2} duplicates skipped, {3} removed"
.format(incount, outcount, duplicates, removed)
)
def _output_binary(self, relpath, output):
""" Write the DAWG to a flattened binary output file with extension '.dawg' """
assert self._dawg is not None
# !!! Experimental / debugging...
f = io.BytesIO()
# Create a packer to flatten the tree onto a binary stream
p = _BinaryDawgPacker(f)
# Write the tree using the packer
self._dawg.write_packed(p)
# Dump the packer contents to stdout for debugging
p.dump()
# Write packed DAWG to binary file
with open(
os.path.abspath(os.path.join(relpath, output + ".dawg")), "wb"
) as of:
of.write(f.getvalue())
f.close()
def _output_text(self, relpath, output):
""" Write the DAWG to a text output file with extension '.text.dawg' """
assert self._dawg is not None
fname = os.path.abspath(os.path.join(relpath, output + ".text.dawg"))
with codecs.open(fname, mode="w", encoding="utf-8") as fout:
self._dawg.write_text(fout)
def build(
self, inputs, output, relpath="resources", word_filter=None, removals=None
):
""" Build a DAWG from input file(s) and write it to the output file(s) (potentially in multiple formats).
The input files are assumed to be individually sorted in correct ascending alphabetical
order. They will be merged in parallel into a single sorted stream and added to the DAWG.
"""
# inputs is a list of input file names
# output is an output file name without file type suffix (extension);
# ".dawg" and ".text.dawg" will be appended depending on output formats
# relpath is a relative path to the input and output files
print("DawgBuilder starting...")
if (not inputs) or (not output):
# Nothing to do
print("No inputs or no output: Nothing to do")
return
self._load(relpath, inputs, removals, word_filter)
# print("Dumping...")
# self._dawg.dump()
print("Outputting...")
# self._output_binary(relpath, output) # Not used for now
self._output_text(relpath, output)
print("DawgBuilder done")
# Filter functions
# The resulting DAWG will include all words for which filter() returns True, and exclude others.
# Useful for excluding long words or words containing "foreign" characters.
# noinspection PyUnusedLocal
def nofilter(word):
""" No filtering - include all input words in output graph """
return True
def filter_skrafl(word):
""" Filtering for Icelandic Scrabble(tm)
Exclude words longer than SCRABBLE_MAXLEN letters (won't fit on board)
Exclude words with non-Icelandic letters, i.e. C, Q, W, Z
Exclude two-letter words in the word database that are not
allowed according to Icelandic Scrabble rules
"""
return len(word) <= SCRABBLE_MAXLEN
def filter_common(word):
""" For the list of common words used by the weakest robot,
skip words longer than 12 characters (those would almost
never be used anyway)
"""
return len(word) <= COMMON_MAXLEN
def run_test():
""" Build a DAWG from the files listed """
# This creates a DAWG from a single file named testwords.txt
print("Starting DAWG build for testwords.txt")
db = DawgBuilder()
t0 = time.time()
db.build(
["testwords.txt"], # Input files to be merged
"testwords", # Output file - full name will be testwords.text.dawg
"resources",
) # Subfolder of input and output files
t1 = time.time()
print("Build took {0:.2f} seconds".format(t1 - t0))
def run_twl06():
""" Build a DAWG from the files listed """
# This creates a DAWG from a single file named TWL06.txt,
# the Scrabble Tournament Word List version 6
print("Starting DAWG build for TWL06.txt")
db = DawgBuilder()
t0 = time.time()
db.build(
["TWL06.txt"], # Input files to be merged
"TWL06", # Output file - full name will be TWL06.text.dawg
"resources", # Subfolder of input and output files
)
t1 = time.time()
print("Build took {0:.2f} seconds".format(t1 - t0))
def run_skrafl():
""" Build a DAWG from the files listed """
# This creates a DAWG from the full database of Icelandic words in
# 'Beygingarlýsing íslensks nútímamáls' (BIN), except abbreviations,
# 'skammstafanir', and proper names, 'sérnöfn'.
# The words in ordalisti.add.txt are added to BIN, and words in
# ordalisti.remove.txt (known errors) are removed.
# The result is about 2.3 million words, generating >100,000 graph nodes
print("Starting DAWG build for skraflhjalp/netskrafl.appspot.com")
db = DawgBuilder()
t0 = time.time()
db.build(
["ordalistimax15.sorted.txt", "ordalisti.add.txt"], # Input files to be merged
"ordalisti", # Output file - full name will be ordalisti.text.dawg
"resources", # Subfolder of input and output files
filter_skrafl, # Word filter function to apply
"ordalisti.remove.txt", # Words to remove
)
t1 = time.time()
print("Build took {0:.2f} seconds".format(t1 - t0))
# Test loading of DAWG
dawg = DawgDictionary()
fpath = os.path.abspath(os.path.join("resources", "ordalisti.text.dawg"))
t0 = time.time()
dawg.load(fpath)
t1 = time.time()
print("DAWG loaded in {0:.2f} seconds".format(t1 - t0))
# Store DAWG as a Python cPickle file
t0 = time.time()
dawg.store_pickle(
os.path.abspath(os.path.join("resources", "ordalisti.dawg.pickle"))
)
t1 = time.time()
print("DAWG pickle file stored in {0:.2f} seconds".format(t1 - t0))
print("DAWG builder run complete")
if __name__ == "__main__":
# Build the whole Icelandic Netskrafl word database by default
run_skrafl()