forked from Palakis/circles-sines-signals
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trig_review.html
155 lines (135 loc) · 6.76 KB
/
trig_review.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
<html>
<head>
<title>Circles Sines and Signals - Trigonometry</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script type="text/javascript" src="third_party/d3/d3.min.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
jax: ["input/TeX","input/MathML","output/SVG"],
extensions: ["tex2jax.js","mml2jax.js","MathMenu.js","MathZoom.js"],
TeX: {
extensions: ["AMSmath.js","AMSsymbols.js","noErrors.js","noUndefined.js"]
}
});
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ TeX: { extensions: ["color.js"] }});
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config(
{
SVG: {linebreaks: { automatic:true }},
displayAlign: "center"
}
);
</script>
<script type="text/javascript"
src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_SVG">
</script>
<link href='//fonts.googleapis.com/css?family=Lato:400,700' rel='stylesheet' type='text/css'>
<link href='//fonts.googleapis.com/css?family=Vollkorn:400italic,400' rel='stylesheet' type='text/css'>
<style>
@import url("fontello-b1d57784/css/fontello.css");
@import url("style.css");
</style>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-59785365-1', 'auto');
ga('send', 'pageview');
</script>
<link rel="icon" type="" href="favicon.ico"></head>
<body>
<div class="title">
<table width="900">
<tr>
<td width="90%">
<div class="bigheader" id="titleinfo">
</div>
</td>
</tr>
<tr>
<td width="70%">
<br/>
<div id="menu" class="menu" style="margin-left: 45; ">
<table> <tr id="menurow"> </tr> </table>
</div>
<!-- -->
</td>
</tr>
</table>
</div>
<div class="littleheader"> THE UNIT CIRCLE
<div class="subheader" style="font-size: 14px"> TRIGONOMETRY REVIEW </div>
</div>
<table class="figureTable">
<tr>
<td style="vertical-align: top;">
<div class="text" style="margin-left: 0px">
<p>
We saw in the previous section that the <i>unit circle</i> is a circle with a radius of one, and sine and cosine are defined in terms of periodic movement around the unit circle. We measure distances around the unit circle in terms of <i>phase</i>. The phase can be thought of as the angle between our rotating line and the x-axis. We can express the phase in either degrees or radians.<sup>1</sup> For any given point on the unit circle, the <i>y-coordinate</i> of the point is given by the sine of the phase, and the <i>x-coordinate</i> is given by cosine of the phase. You can fiddle with the slider in the bottom left corner of <i>Figure 1</i> to better understand the relationship between the unit circle, sine, cosine, and phase.
</p>
<p>
</p><br/><br/>
<table>
<tr>
<td>
<div class="figureCaption">
<b>Figure 1.</b> The Unit Circle<br/><br/>
</div>
<svg id="phasorTrig" class="svgWithText" width="250" height="420" style=""></svg>
<script type="text/javascript" src="js/phasor_trig.js"></script>
<div class="controls">
<label for=phaseFader>Phase</label>
<input type=range min=0 max=1000 value=125 id=phaseFader step=20 oninput="updatePhase(value);" style="width:100%">
</div>
</td>
<td>
<td class="math" width="500px" style="padding-left: 10px;">
If you’re willing to recall some high school trigonometry, you’ll probably remember that sine and cosine were defined using the mnemonic SOHCAHTOA,
<br/><br/>
<div style="font-family: lato; color: #333; padding-left: 20px; text-align: center;">
<b>Sine</b> is <b>Opposite</b> over <b>Hypotenuse</b><br/> <b>Cosine</b> is <b>Adjacent</b> over <b>Hypotenuse</b><br/> <b>Tangent</b> is <b>Opposite</b> over <b>Adjacent</b>
</div><br/><br/>
Recall further that <i>opposite</i> refers to the length of the vertical or green line, and <i>adjacent</i> refers to the length of the horizontal or red line.<br/><br/>
<div style="font-family: lato; color: #333; padding-left: 20px; text-align: center">
<b>sin(phase)</b> = <b><span style="color: green">opposite</span></b> / <b><span style="color: steelblue">hypotenuse</span></b><br/><br/>
<b>cos(phase)</b> = <span style="color: red"><b>adjacent</b></span> / <b><span style="color: steelblue">hypotenuse</span></b>
</div>
<br/><br/>
In the case of the unit circle, the length of the hypotenuse (blue line) is always equal to one, making our equations pretty trivial.<br/><br/>
<div style="font-family: lato; color: #333; padding-left: 20px; text-align: center">
<b>sin(phase)</b> = <b><span style="color: green">opposite</span></b> / <b>1</b><br/><br/>
<b>cos(phase)</b> = <span style="color: red"><b>adjacent</b></span> / <b>1</b>
</div>
</td>
</td>
</tr>
</table><br/><br/>
<br/>
</td>
<td class="figureExplanation" style="">
<b>1.</b> There are 360 degrees in a circle, and 2π radians. Radians are a much purer way to measure distances around the circle. We find it normal to think of a circle as containing 360 degrees, but this is an Earth-centric, historical, and non-universal notion. Humans have settled on the number 360 because it’s nicely divisible, and happens to be quite close to the number of days in a year. When our alien overlords arrive from a different solar system, they’ll understand radians but not degrees because radians are defined purely in terms of <a href="http://en.wikipedia.org/wiki/File:Circle_radians.gif">distances around the unit-circle</a>.
<br/><br/>
</td>
</tr>
</table>
<script>
var TRIG_PHASE = 0.125;
var TARGET_TRIG_PHASE = 0.125;
var TRIG_PHASE_INTERPOLATOR = d3.interpolateNumber(TRIG_PHASE, TARGET_TRIG_PHASE);
var TRIG_PHASE_INTERPOLATION = 1.0;
function GET_TRIG_PHASE() {
return TRIG_PHASE_INTERPOLATOR(Math.min(TRIG_PHASE_INTERPOLATION, 1.0));
}
function updatePhase(phase) {
TRIG_PHASE = GET_TRIG_PHASE();
TARGET_TRIG_PHASE = phase / 1000;
TRIG_PHASE_INTERPOLATION = 0.0;
TRIG_PHASE_INTERPOLATOR = d3.interpolateNumber(TRIG_PHASE, TARGET_TRIG_PHASE);
}
</script>
<div class="title" id="footer"></div><script type="text/javascript" src="menu.js"></script></body>
</html>