-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerateData2R.m
89 lines (80 loc) · 2.93 KB
/
GenerateData2R.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% Run this code only ONCE!
% Parameters of the robot
L1 = 5;
L2 = 3;
theta1 = 0:0.1:(pi/2);
theta2 = 0:0.1:(pi);
% Generate data for 2R robot
[input,target] = generateData2R(L1,L2,theta1,theta2);
% Split the data into training (80%) and testing (20%)
%%% Hint: try experimenting with the testing percentage
[in_train, out_train, in_test, out_test] = splitData(input,target,0.2);
%%
% Generate data for 2R robot using forward kinematics
% Inputs:
% L1 - Length of first link
% L2 - Length of 2nd link
% Theta1 - Range of theta 1 values (1xN row vector)
% Theta2 - Range of theta 2 values (1xN row vector)
%
% Output:
% input - Nx2 matrix with (X,Y) values of end-effector position
% target - Nx2 matrix with (Theta1,Theta2) values used to reach (X,Y)
%
function [input,target] = generateData2R(L1, L2, Theta1, Theta2)
[TH1,TH2] = meshgrid(Theta1,Theta2);
x = L1*cos(TH1)+L2*cos(TH1+TH2);
y = L1*sin(TH1)+L2*sin(TH1+TH2);
input = [x(:),y(:)];
target = [TH1(:),TH2(:)];
end
% Generate data for 3R robot using forward kinematics
% Inputs:
% L1 - Length of first link
% L2 - Length of 2nd link
% L3 - Length of 3rd link
% Theta1 - Range of theta 1 values (1xN row vector)
% Theta2 - Range of theta 2 values (1xN row vector)
% Theta3 - Range of theta 3 values (1xN row vector)
%
% Output:
% input - Nx2 matrix with (X,Y) values of end-effector position
% target - Nx3 matrix with (Theta1,Theta2,Theta3) values used to reach (X,Y)
%
function [input,target] = generateData3R(L1, L2, L3, Theta1, Theta2, Theta3)
[TH1,TH2,TH3] = meshgrid(Theta1,Theta2,Theta3);
x = L1*cos(TH1)+L2*cos(TH1+TH2)+L3*cos(TH1+TH2+TH3);
y = L1*sin(TH1)+L2*sin(TH1+TH2)+L3*sin(TH1+TH2+TH3);
input = [x(:),y(:)];
target = [TH1(:),TH2(:),TH3(:)];
end
% Split the data set into training/testing
%
% Inputs:
% input - Nx2 matrix with (X,Y) values of end-effector position
% target - Nx2 or Nx3 matrix with "theta" values used to reach (X,Y)
% percent_test - floating point number representing percentage of data
% that will be used for testing. Example, if you want to split the data
% into 70% training, 30% testing, then just input 0.3 in this field.
%
% Outputs:
% x_train - feature dataset used for training
% y_train - target dataset used for training
% x_test - feature dataset used for testing
% y_test - target dataset used for testing
%
function [x_train, y_train, x_test, y_test] = splitData(input, target, percent_test)
rng(42)
rand_arr = randperm(length(input));
N = length(input);
input_rand = []; target_rand = [];
for k = 1:N
input_rand(k,:) = input(rand_arr(k),:);
target_rand(k,:) = target(rand_arr(k),:);
end
idx = floor(percent_test*N);
x_test = input_rand(1:idx,:)';
y_test = target_rand(1:idx,:)';
x_train = input_rand(idx:N, :)';
y_train = target_rand(idx:N, :)';
end