-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDiffAugment_pytorch.py
111 lines (93 loc) · 4.73 KB
/
DiffAugment_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Differentiable Augmentation for Data-Efficient GAN Training
# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
# https://arxiv.org/pdf/2006.10738.pdf
import torch
import torch.nn.functional as F
def DiffAugment(x, policy='', channels_first=True):
if policy:
assert x.max() <= 1 and x.min() >= 0
if not channels_first:
x = x.permute(0, 3, 1, 2)
for p in policy.split(','):
for f in AUGMENT_FNS[p]:
x = f(x)
if not channels_first:
x = x.permute(0, 2, 3, 1)
x = x.contiguous()
return x
def rand_brightness(x):
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
return x
def rand_saturation(x):
x_mean = x.mean(dim=1, keepdim=True)
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
return x
def rand_contrast(x):
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
return x
def rand_translation(x, ratio=(1, 8)):
shift_x, shift_y = x.size(2) * ratio[0] // ratio[1], x.size(3) * ratio[0] // ratio[1]
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(x.size(2), dtype=torch.long, device=x.device),
torch.arange(x.size(3), dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
return x
def rand_cutout(x, ratio=(1, 2)):
cutout_size = x.size(2) * ratio[0] // ratio[1], x.size(3) * ratio[0] // ratio[1]
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
mask[grid_batch, grid_x, grid_y] = 0
x = x * mask.unsqueeze(1)
return x
AUGMENT_FNS = {
'color': [rand_brightness, rand_saturation, rand_contrast],
'translation': [rand_translation],
'translation16': [lambda x: rand_translation(x, ratio=(1,16))],
'translation12': [lambda x: rand_translation(x, ratio=(1,12))],
'cutout': [rand_cutout],
'cutout4': [lambda x: rand_cutout(x, ratio=(1,4))],
}
if __name__ == '__main__':
import os
import ipdb
import utils
import data
import torchvision.utils as vutils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ic_ckpt_path = f'{os.environ["ROOT1"]}/mm/train-ic4-cifar10/cifar10-1e-3-small-50000/discriminator.pt'
# Data
data_args = utils.load_args(os.path.join(os.path.dirname(ic_ckpt_path), 'args.json'))
data_args.device = device
dat = data.load_data(data_args.dataset, data_args.dataroot,
device=device, imgsize=data_args.imageSize, Ntrain=data_args.Ntrain, Ntest=data_args.Ntest,dataset_size=data_args.dataset_size)
reals = dat['X_train'][:100]
# Augment
policy = 'color,translation,cutout'
# colored = DiffAugment(reals, policy='color')
# translated = DiffAugment(reals, policy='translation')
# cutout = DiffAugment(reals, policy='cutout')
# alled = DiffAugment(reals, policy='color,translation,cutout')
alled2 = DiffAugment(reals / 2 + .5, policy='color,translation,cutout')
# vutils.save_image(reals / 2 + .5, 'test_augment_reals.jpeg', nrow=10)
# vutils.save_image(colored / 2 + .5, 'test_augment_colored.jpeg', nrow=10)
# vutils.save_image(translated / 2 + .5, 'test_augment_translated.jpeg', nrow=10)
# vutils.save_image(cutout / 2 + .5, 'test_augment_cutout.jpeg', nrow=10)
# vutils.save_image(alled / 2 + .5, 'test_augment_alled.jpeg', nrow=10)
# vutils.save_image(alled2 , 'test_augment_alled2.jpeg', nrow=10)
ipdb.set_trace()