-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
149 lines (124 loc) · 5.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
import math
class CustomDataset(Dataset):
def __init__(self, texts, input_ids, attention_masks, token_type_ids, labels):
self.texts = texts
self.input_ids = input_ids
self.token_type_ids = token_type_ids
self.attention_masks = attention_masks
self.labels = labels
def __len__(self):
return len(self.texts)
def __getitem__(self, item ):
text = self.texts[item]
input_id = torch.LongTensor(self.input_ids[item])
token_type_id = torch.LongTensor(self.token_type_ids[item])
attention_mask = torch.LongTensor(self.attention_masks[item])
label = torch.LongTensor(self.labels[item])
return {
'text': text,
'input_ids': input_id,
'token_type_ids': token_type_id,
'attention_mask': attention_mask,
'labels': label,
}
class FeedForwardSubLayer(nn.Module):
# Specify the two linear layers' input and output sizes
def __init__(self, d_model, d_ff):
super(FeedForwardSubLayer, self).__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.relu = nn.ReLU()
# Apply a forward pass
def forward(self, x):
return self.fc2(self.relu(self.fc1(x)))
# Complete the initialization of elements in the encoder layer
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads)
self.feed_forward = FeedForwardSubLayer(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
attn_output = self.self_attn(x, x, x, mask)
x = self.norm1(x + self.dropout(attn_output))
ff_output = self.feed_forward(x)
return self.norm2(x + self.dropout(ff_output))
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
# Set the number of attention heads
self.num_heads = num_heads
self.d_model = d_model
assert d_model % num_heads == 0 #dimension, headlere tam bölünüyormu kontrol et.
self.head_dim = d_model // num_heads
# Set up the linear transformations
self.query_linear = nn.Linear(d_model, d_model)
self.key_linear = nn.Linear(d_model, d_model)
self.value_linear = nn.Linear(d_model, d_model)
self.output_linear = nn.Linear(d_model, d_model)
def split_heads(self, x, batch_size):
# Split the sequence embeddings in x across the attention heads
x = x.view(batch_size, -1, self.num_heads, self.head_dim)
return x.permute(0, 2, 1, 3) #.contiguous().view(batch_size * self.num_heads, -1, self.head_dim)
def compute_attention(self, query, key, mask=None):
# Compute dot-product attention scores
scores = torch.matmul(query, key.permute(0,1,3,2))
mask = mask.unsqueeze(1).unsqueeze(1)
if mask is not None:
scores = scores.masked_fill(mask == 0, float("-1e20"))
# Normalize attention scores into attention weights
attention_weights = F.softmax(scores, dim=-1)
return attention_weights
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
query = self.split_heads(self.query_linear(query), batch_size)
key = self.split_heads(self.key_linear(key), batch_size)
value = self.split_heads(self.value_linear(value), batch_size)
attention_weights = self.compute_attention(query, key, mask)
# Multiply attention weights by values, concatenate and linearly project outputs
output = torch.matmul(attention_weights, value)
output = output.view(batch_size, self.num_heads, -1, self.head_dim).permute(0, 2, 1, 3).contiguous().view(
batch_size, -1, self.d_model)
return self.output_linear(output)
class PositionalEncoder(nn.Module):
def __init__(self, d_model, max_length):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
self.max_length = max_length
# Initialize the positional encoding matrix
pe = torch.zeros(max_length, d_model)
position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2, dtype=torch.float) * -(math.log(10000.0) / d_model))
# Calculate and assign position encodings to the matrix
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
# Update the embeddings tensor adding the positional encodings
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return x
class TransformerEncoder(nn.Module):
def __init__(self):
super(TransformerEncoder, self).__init__()
self.embedding = nn.Embedding(100000, 512)
self.positional_encoding = PositionalEncoder(512, 128)
# Define a stack of multiple encoder layers
self.layers = nn.ModuleList([EncoderLayer(512, 8, 2048, 0.1) for _ in range(6)])
# Complete the forward pass method
def forward(self, x, mask):
x = self.embedding(x)
x = self.positional_encoding(x)
for layer in self.layers:
x = layer(x, mask)
return x
def load_model_to_cpu(model, path="model.pth"):
checkpoint = torch.load(path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint)
return model