forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.mk.example
77 lines (62 loc) · 1.84 KB
/
config.mk.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#-----------------------------------------------------
# cxxnet: the configuration compile script
#
# This is the default configuration setup for cxxnet
# If you want to change configuration, do the following steps:
#
# - copy this file to the root folder
# - modify the configuration you want
# - type make or make -j n for parallel build
#----------------------------------------------------
# choice of compiler
export CC = gcc
export CXX = g++
export NVCC = nvcc
# whether compile with debug
DEBUG = 1
# whether use CUDA during compile
USE_CUDA = 1
# add the path to CUDA libary to link and compile flag
# if you have already add them to enviroment variable, leave it as NONE
USE_CUDA_PATH = /usr/local/cuda-7.0
# whether use CUDNN R3 library
USE_CUDNN = 1
USE_CUDNN_PATH = /usr/lib64/cudnn-v3
# whether use opencv during compilation
# you can disable it, however, you will not able to use
# imbin iterator
USE_OPENCV = 1
# use openmp for parallelization
USE_OPENMP = 1
#
# choose the version of blas you want to use
# can be: mkl, blas, atlas, openblas
USE_STATIC_MKL = NONE
USE_BLAS = openblas
#
# add path to intel libary, you may need it
# for MKL, if you did not add the path to enviroment variable
#
USE_INTEL_PATH = NONE
# the additional link flags you want to add
ADD_LDFLAGS =
# the additional compile flags you want to add
ADD_CFLAGS =
#
# If use MKL, choose static link automaticly to fix python wrapper
#
ifeq ($(USE_BLAS), mkl)
USE_STATIC_MKL = 1
endif
USE_DIST_KVSTORE = 1
#------------------------
# configuration for DMLC
#------------------------
# whether use HDFS support during compile
# this will allow cxxnet to directly save/load model from hdfs
USE_HDFS = 0
# whether use AWS S3 support during compile
# this will allow cxxnet to directly save/load model from s3
USE_S3 = 0
# path to libjvm.so
LIBJVM=$(JAVA_HOME)/jre/lib/amd64/server