- Objective: Leveraging deep learning architecture to construct a prediction model for median house prices.
Dataset
can be downloaded/loaded using the func:sklearn.datasets.fetch_california_housing
function.
- Data Standardization
- Create simple linear regression neural network
- Create dynamic non-linear regression neural network for hyperparameter tuning
- Comparing the convergence performance of different loss functions
- Hyperparameter tuning and cross-validation of
hidden layers
,number of neurons
,activation function
, andlearning rate
- Best parameters: {'activation function': Tanh(), 'number of neurons': 16, 'hidden layers': 2, 'learning rate': 0.05}
- Best mean CV score (MAPE): 20.5663
- Test score (MAPE): 20.1813
- Test R2 Score: 0.792
- Average Accuracy: 79.82%