-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmatcher.py
93 lines (79 loc) · 3.2 KB
/
matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import settings
import utilities
from items import ImageItem
from math import *
class Matcher(object):
def __init__(self, images, width, height):
self.images = images
self.width = width
self.height = height
self.removed_images = []
self.converted_to_lab = False
def find_closest(self, other, method=settings.DEFAULT_COLOR_DIFF_METHOD):
if not self.images:
raise ValueError('Please load database first')
other = ImageItem(other, self.width, self.height)
return self._find_by_rgb_method(other, getattr(Matcher, settings.ALLOWED_METHODS_SIGNATURE[method]))
def _find_by_rgb_method(self, other, method):
if self.converted_to_lab:
raise ValueError('Conversion from LAB to RGB is not supported')
min_item = min(self.images,
key=lambda image: method(image.r, image.g, image.b, other.r, other.g, other.b))
return min_item
@staticmethod
def euclidean(r1, g1, b1, r2, g2, b2):
# https://en.wikipedia.org/wiki/Color_difference
return sqrt(pow((r1 - r2), 2) + pow((g1 - g2), 2) + pow((b1 - b2), 2))
@staticmethod
def weighted_euclidean(r1, g1, b1, r2, g2, b2):
# https://en.wikipedia.org/wiki/Color_difference
return sqrt(0.3 * pow((r1 - r2), 2) + 0.59 * pow((g1 - g2), 2) + 0.11 * pow((b1 - b2), 2))
@staticmethod
def weighted_euclidean_plus(r1, g1, b1, r2, g2, b2):
# https://en.wikipedia.org/wiki/Color_difference
return sqrt(2 * pow((r1 - r2), 2) + 4 * pow((g1 - g2), 2) + 3 * pow((b1 - b2), 2))
@staticmethod
def weighted_euclidean_plus_plus(r1, g1, b1, r2, g2, b2):
# https://en.wikipedia.org/wiki/Color_difference
r_mean = (r1 + r2) / 2.0
return sqrt((2 + (r_mean / 256.0)) * pow((r1 - r2), 2) + 4 * pow((g1 - g2), 2) + ((2 + (255 - r_mean) / 256.0) * pow(
(b1 - b2), 2)))
def remove(self, image):
self.images.remove(image)
self.removed_images.append(image)
def restore(self):
self.images += self.removed_images
self.removed_images = []
@property
def size(self):
return len(self.images)
# def convert_to_lab(self):
#
# for image in self.images:
# image.convert_to_lab()
# self.converted_to_lab = True
#
# def _find_by_lab_method(self, other, method):
# if not self.converted_to_lab:
# self.convert_to_lab()
#
# other.convert_to_lab()
#
# min_item = min(self.images, key=lambda image: method(image.l, image.a, image.b, other.l, other.a, other.b))
#
# return min_item
#
# def find_by_cie76(self, other):
# return self._find_by_lab_method(other, utilities.euclidean_diff)
#
# def find_by_cie94(self, other):
# return self._find_by_lab_method(other, utilities.delta_e_94)
#
# def find_by_ciede2000(self, other):
# return self._find_by_lab_method(other, utilities.delta_e_00)
#
# def find_by_cmc_21(self, other):
# return self._find_by_lab_method(other, utilities.cmc_21_diff)
#
# def find_by_cmc_11(self, other):
# return self._find_by_lab_method(other, utilities.cmc_11_diff)