-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathMTK_PrimerGenerator.py
703 lines (507 loc) · 29.2 KB
/
MTK_PrimerGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import numpy as np
import readline
from datetime import date
######################################################
# Basic tools for sequences and primer generation
######################################################
complement = {'A': 'T', 'T': 'A', 'C':'G', 'G':'C'}
translate_dict = {'TTT': 'F', 'CTT': 'L', 'ATT': 'I', 'GTT': 'V', 'TTC': 'F', 'CTC': 'L', 'ATC': 'I', 'GTC': 'V', 'TTA': 'L', 'CTA': 'L', 'ATA': 'I', 'GTA': 'V', 'TTG': 'L', 'CTG': 'L', 'ATG': 'M', 'GTG': 'V', 'TCT': 'S', 'CCT': 'P', 'ACT': 'T', 'GCT': 'A', 'TCC': 'S', 'CCC': 'P', 'ACC': 'T', 'GCC': 'A', 'TCA': 'S', 'CCA': 'P', 'ACA': 'T', 'GCA': 'A', 'TCG': 'S', 'CCG': 'P', 'ACG': 'T', 'GCG': 'A', 'TAT': 'Y', 'CAT': 'H', 'AAT': 'N', 'GAT': 'D', 'TAC': 'Y', 'CAC': 'H', 'AAC': 'N', 'GAC': 'D', 'TAA': '*', 'CAA': 'Q', 'AAA': 'K', 'GAA': 'E', 'TAG': '*', 'CAG': 'Q', 'AAG': 'K', 'GAG': 'E', 'TGT': 'C', 'CGT': 'R', 'AGT': 'S', 'GGT': 'G', 'TGC': 'C', 'CGC': 'R', 'AGC': 'S', 'GGC': 'G', 'TGA': '*', 'CGA': 'R', 'AGA': 'R', 'GGA': 'G', 'TGG': 'W', 'CGG': 'R', 'AGG': 'R', 'GGG': 'G'}
part_end_dict = {'1forward': 'GCATCGTCTCATCGGTCTCACCCT', '1reverse': 'ATGCCGTCTCAGGTCTCACGTT', '2forward': 'GCATCGTCTCATCGGTCTCAAACG', '2reverse': 'ATGCCGTCTCAGGTCTCACATA', '3forward': 'GCATCGTCTCATCGGTCTCATATG', '3reverse': 'ATGCCGTCTCAGGTCTCAGGATCC', '3aforward': 'GCATCGTCTCATCGGTCTCATATG', '3areverse': 'ATGCCGTCTCAGGTCTCAAGAACC', '3bforward': 'GCATCGTCTCATCGGTCTCATTCT', '3breverse': 'ATGCCGTCTCAGGTCTCAGGATCC', '4forward': 'GCATCGTCTCATCGGTCTCAATCCTAA', '4reverse': 'ATGCCGTCTCAGGTCTCACAGC', '4aforward': 'GCATCGTCTCATCGGTCTCAATCC', '4areverse': 'ATGCCGTCTCAGGTCTCAGCCATTA', '4aIIforward': 'TCGCGTCTCATCCA', '4aIIreverse': 'ATGCCGTCTCAGGTCTCAGCCATTA', '4bforward': 'GCATCGTCTCATCGGTCTCATGGC', '4breverse': 'ATGCCGTCTCAGGTCTCACAGC', '5forward': 'GCATCGTCTCATCGGTCTCAGCTG', '5reverse': 'ATGCCGTCTCAGGTCTCATGTA', '6forward': 'GCATCGTCTCATCGGTCTCATACA', '6reverse': 'ATGCCGTCTCAGGTCTCAACTC', '7forward': 'GCATCGTCTCATCGGTCTCAGAGT', '7reverse': 'ATGCCGTCTCAGGTCTCATCGG', '8forward': 'GCATCGTCTCATCGGTCTCACCGA', '8reverse': 'ATGCCGTCTCAGGTCTCAAGGG', '8aforward': 'GCATCGTCTCATCGGTCTCACCGA', '8areverse': 'ATGCCGTCTCAGGTCTCAATTG', '8bforward': 'GCATCGTCTCATCGGTCTCACAAT', '8breverse': 'ATGCCGTCTCAGGTCTCAAGGG', '3bIforward': 'GCATCGTCTCATCGGTCTCATTCT', '3bIreverse': 'GAACGTCTCATGCG', '3bIIforward': 'GAACGTCTCACGCA', '3bIIreverse': 'ATGCCGTCTCAGGTCTCAGGATCC'}
def reverse_complement(seq):
n = len(seq)
rc_seq = ''
for i in np.arange(n)[::-1]:
rc_seq += complement[seq[i]]
return(rc_seq)
def translate(dna_seq):
if len(dna_seq)%3 != 0:
dna_seq = dna_seq[:-(len(dna_seq)%3)].upper()
else:
dna_seq = dna_seq.upper()
codons = [dna_seq[i : i + 3] for i in range(0, len(dna_seq), 3)]
aa_seq = ''
for i in codons:
aa_seq += translate_dict[i]
return(aa_seq)
def calculate_melting_temp(dna_seq):
# calculate melting temp of a given sequence using a simple formula
A = dna_seq.count('A')
T = dna_seq.count('T')
G = dna_seq.count('G')
C = dna_seq.count('C')
if len(dna_seq) < 14:
Tm = (A + T) * 2 + (G + C) * 4
else:
Tm = 64.9 +41*(G + C - 16.4)/(A + T + G + C)
return(round(Tm, 2))
def calculate_optimal_primer_length(seq, starting_ix, direction):
# find the length of a primer at which the temp first exceeds 57 degrees centigrade
n = 10
sequence = seq[starting_ix : starting_ix + n]
melt_temp = 0
while (melt_temp < 57.): # changed to 57.0 on 2/16/19
if direction == 'forward':
sequence = seq[starting_ix : starting_ix + n]
elif direction == 'reverse':
sequence = seq[starting_ix - n + 1 : starting_ix + 1]
melt_temp = calculate_melting_temp(sequence)
n += 1
return(n)
######################################################
# BSMBI and BSAI restriction site detection
######################################################
def find_silent_mutations(seq, n):
# takes dna sequence (in frame) and nucleotide position to mutate
# returns current codon, position of first nucleotide in codon, and options for silent mutation
current_codon = seq[3 * (n//3) : 3 * (n//3 + 1)]
possible_codons = []
# find amino acid associated with position n
translation = translate(seq)
aa_of_interest = translation[n//3]
# collect translation data
keys = np.array(list(translate_dict.keys()))
vals = np.array(list(translate_dict.values()))
# which codons could represent the amino acid at this position?
ix = np.where(vals == aa_of_interest)[0]
possible_codons = [keys[i] for i in ix if keys[i] != current_codon]
return(current_codon, 3 * (n//3), possible_codons)
def find_restriction_sites(dna_seq):
dna_seq = dna_seq.upper()
bsmbi_recog_seq_f = 'CGTCTC'
bsmbi_recog_seq_r = 'GAGACG'
bsai_recog_seq_f = 'GGTCTC'
bsai_recog_seq_r = 'GAGACC'
potential_recognition_sites = np.array([dna_seq[i : i + 6] for i in range(0, len(dna_seq) - 6)])
bsmbi_for_sites = np.where(potential_recognition_sites == bsmbi_recog_seq_f)[0]
bsmbi_rev_sites = np.where(potential_recognition_sites == bsmbi_recog_seq_r)[0]
bsai_for_sites = np.where(potential_recognition_sites == bsai_recog_seq_f)[0]
bsai_rev_sites = np.where(potential_recognition_sites == bsai_recog_seq_r)[0]
return(bsmbi_for_sites, bsmbi_rev_sites, bsai_for_sites, bsai_rev_sites)
def number_restriction_sites(dna_seq):
a, b, c, d = find_restriction_sites(dna_seq)
return(len(a), len(b), len(c), len(d))
def number_reactions_needed(dna_seq):
RS = find_restriction_sites(dna_seq)
total = 0
for rs in RS:
total += len(rs)
return(total + 1)
def expected_product_sizes(dna_seq):
RS = find_restriction_sites(dna_seq)
all_rs = [0]
for i in RS:
for j in i:
all_rs.append(j)
all_rs.append(len(dna_seq))
incomplete_prod_sizes = np.diff(np.sort(np.array(all_rs)))
# need to add 24 nts at each edge
# and 15 nts for each internal site
# default to 30
pcr_add = np.zeros_like(incomplete_prod_sizes) + 30
# except for ends where we need and additional 9 nts
pcr_add[0] += 9
pcr_add[-1] += 9
complete_prod_sizes = incomplete_prod_sizes + pcr_add
return(complete_prod_sizes)
# write a function to find overhangs (top strand) in sequences containing a restriction site
def find_overhangs(dna_seq):
overhangs = []
bsmbi_for_sites, bsmbi_rev_sites, bsai_for_sites, bsai_rev_sites = find_restriction_sites(dna_seq)
if len(bsmbi_for_sites) > 0:
for i in bsmbi_for_sites:
overhangs.append(dna_seq[i + 7 : i + 11])
if len(bsmbi_rev_sites) > 0:
for i in bsmbi_rev_sites:
overhangs.append(dna_seq[i - 5 : i - 1])
if len(bsai_for_sites) > 0:
for i in bsai_for_sites:
overhangs.append(dna_seq[i + 7 : i + 11])
if len(bsai_rev_sites) > 0:
for i in bsai_rev_sites:
overhangs.append(dna_seq[i - 5 : i - 1])
return(overhangs)
def find_bsmbi_overhangs(dna_seq):
overhangs = []
bsmbi_for_sites, bsmbi_rev_sites, bsai_for_sites, bsai_rev_sites = find_restriction_sites(dna_seq)
if len(bsmbi_for_sites) > 0:
for i in bsmbi_for_sites:
overhangs.append(dna_seq[i + 7 : i + 11])
if len(bsmbi_rev_sites) > 0:
for i in bsmbi_rev_sites:
overhangs.append(dna_seq[i - 5 : i - 1])
return(overhangs)
def find_bsai_overhangs(dna_seq):
overhangs = []
bsmbi_for_sites, bsmbi_rev_sites, bsai_for_sites, bsai_rev_sites = find_restriction_sites(dna_seq)
if len(bsai_for_sites) > 0:
for i in bsai_for_sites:
overhangs.append(dna_seq[i + 7 : i + 11])
if len(bsai_rev_sites) > 0:
for i in bsai_rev_sites:
overhangs.append(dna_seq[i - 5 : i - 1])
return(overhangs)
######################################################
# Putting it all together
######################################################
def find_silent_mutations_in_RS(seq, ix_0):
a1, b1, c1, d1 = number_restriction_sites(seq)
num_sites_start = a1 + b1 + c1 + d1
recog_site_ix = np.arange(ix_0, ix_0 + 6)
proposed_silent_mutations = []
for ix in recog_site_ix:
previous_codon, position_start, sil_muts = find_silent_mutations(seq, ix)
for j in sil_muts:
# check to make sure we have removed the restrcition site
candidate_seq = seq[ : position_start] + j + seq[position_start + 3:]
a2, b2, c2, d2 = number_restriction_sites(candidate_seq)
num_sites_end = a2 + b2 + c2 + d2
removal_condition = num_sites_end < num_sites_start
# check to make sure all requested changes are within the recognition site
changed_nts = np.where(np.array([candidate_seq[i] == seq[i] for i in range(len(seq))]) == False)[0]
within_bounds_condition = len(np.intersect1d(recog_site_ix, changed_nts)) == len(changed_nts)
if (removal_condition & within_bounds_condition):
proposed_silent_mutations.append(previous_codon + str(position_start) + j)
return(np.unique(proposed_silent_mutations))
def point_mutation_generator(seq, n, new_aa):
# takes dna sequence (in frame) and nucleotide position to mutate
# returns current codon, position of first nucleotide in codon, and options for silent mutation
current_codon = seq[3 * (n//3) : 3 * (n//3 + 1)]
possible_codons = []
# find amino acid associated with position n
translation = translate(seq)
aa_of_interest = translation[n//3]
# collect translation data
keys = np.array(list(translate_dict.keys()))
vals = np.array(list(translate_dict.values()))
# which codons could represent the amino acid at this position?
ix = np.where(vals == new_aa)[0]
possible_codons = [keys[i] for i in ix if keys[i] != current_codon]
return(current_codon, 3 * (n//3), possible_codons)
def generate_GG_PMut_primers(seq, ix, mutate_to):
##################################################################
# these primers can be used to mutate internal restriction sites.
# they won't interfere with the edge overhangs, but we
# still need to check for compatibility in overall reaction
##################################################################
# BASIC STRUCTURE OF ONE OF THESE MUTATION PRIMERS:
# SPACER, BSMBI_SITE, 6 NUCLEOTIDES OF OUR CHOICE, BINDING SEQUENCE
# THE SIX NUCLEOTIDES CAN BE USED TO REMOVE RESTRICTION SITES
# OR TO INTRODUCE MUTATIONS
# find overlaps that are compatible with the GG rxn
spacer = 'GAA'
bsmbi_site = 'CGTCTC'
# FIND ALL POSSIBLE PRIMERS THAT CAN BE USED TO MUTATE seq STARTING AT ix
# AND SUBSTITUTING mutate_to IN ITS PLACE
forward_primers = []
reverse_primers = []
target_seq = seq[ : ix] + mutate_to + seq[ix + len(mutate_to) : ]
for shift in np.arange(6):
left = ix - (6 - len(mutate_to)) + shift
right = ix + (6 - len(mutate_to)) + shift
six_nuc_seq = target_seq[ left : right ]
n_R = calculate_optimal_primer_length(seq, right, 'forward')
n_L = calculate_optimal_primer_length(seq, left, 'reverse')
binding_seq_for = seq[right : right + n_R]
binding_seq_rev = reverse_complement(seq[left - n_L : left ])
fp = spacer + bsmbi_site + six_nuc_seq + binding_seq_for
rp = spacer + bsmbi_site + reverse_complement(six_nuc_seq) + binding_seq_rev
# check to verify that overhangs do not interfere with part assembly overhangs "TCGG" and "GACC"
fp_overhang = find_overhangs(fp)
rp_overhang = find_overhangs(rp)
overhang_condition = (fp != "TCGG") & (fp != "GACC") & (rp != "TCGG") & (rp != "GACC")
# and that we have just one bsmbi site in the primer
just_one_site_condition = (number_restriction_sites(fp) == (1,0,0,0)) & (number_restriction_sites(rp) == (1,0,0,0))
if overhang_condition & just_one_site_condition:
forward_primers.append(fp)
reverse_primers.append(rp)
return(forward_primers, reverse_primers)
def generate_GG_edge_primers(seq, part_num):
part_specific_f = part_end_dict[str(part_num) + 'forward']
part_specific_r = part_end_dict[str(part_num) + 'reverse']
n_R = calculate_optimal_primer_length(seq, 0, 'forward')
n_L = calculate_optimal_primer_length(seq, len(seq), 'reverse')
forward = part_specific_f + seq[ : n_R]
reverse = part_specific_r + reverse_complement(seq[- n_L - 1 : ])
return(forward, reverse)
def generate_GG_protocol(seq, part_num, verbose):
seq = seq.upper()
if part_num in ['3', '3a', '3b', '4a']:
if len(seq) % 3 != 0:
contin = input('Sequence appears to be out of frame. Continue?\n')
if contin:
pass
else:
return()
aa_seq = translate(seq)
if aa_seq[-1] == '*':
print('Warning! Translated sequence ends with a stop codon (or is out of frame)\n')
y_n = input('Should I remove it? (y/n)')
if y_n in ['y', 'Y', 'yes', 'Yes', 'YES']:
print('Stop codon removed!')
seq = seq[:-3]
else:
print('Not removed...')
pass
if aa_seq[0] == 'M':
print('Warning! Start codon is not needed at beginning of sequence\n')
y_n = input('Should I remove it? (y/n)')
if y_n in ['y', 'Y', 'yes', 'Yes', 'YES']:
print('Start codon removed!')
seq = seq[3:]
else:
print('Not removed...')
pass
#########################################################
# preliminary summary of restriction sites to be removed
#########################################################
if verbose == True:
print('\n=====================================================')
print('Sequence summary:')
print('=====================================================\n')
sites = find_restriction_sites(seq)
site_types = ['BsmBI (forward)', 'BsmBI (reverse)', 'BsaI (forward)', 'BsaI (reverse)']
sites_flat = np.sort(np.concatenate(sites))
for i in range(4):
if len(sites[i]) > 0 :
if verbose == True:
print('Sequence contains ' + str(len(sites[i])) + ' ' + site_types[i] + ' sites beginning at:')
print(sites[i])
#########################################################
# check for very early or late restriction sites
#########################################################
# if restriction sites occurs within 50 nts of beginning
# or within 50 nts of the end of the target sequence,
# generate a pair of oligos that can be annealed and
# phosphorylated
#########################################################
# initialize dictionaries that contain primerset information
#########################################################
forward_primer_seq = {}
reverse_primer_seq = {}
overhang_seq = {}
#########################################################
# make edge primers for part assembly
#########################################################
f1, r1 = generate_GG_edge_primers(seq, part_num)
primer_sets = []
primer_sets.append(['FOR'])
overhang_seq['FOR'] = find_bsmbi_overhangs(f1)[0]
#########################################################
# For each restriction site:
# find silent mutations
# for each possible silent mutation:
# find the 6 primer sets that can be used to generate the mutations
# and find overhangs
# Now select best combination of overhangs for assembly
#########################################################
if verbose == True:
print('\n=====================================================')
print('Silent Mutation Details:')
print('=====================================================\n')
for site in sites_flat:
sub_primer_set = []
potential_mutations = find_silent_mutations_in_RS(seq, site)
if len(potential_mutations) > 0:
if verbose == True:
print('allowable mutations for recognition sequence beginning at ' + str(site) + ':')
for pm in potential_mutations:
print(pm[:3], pm[3:-3], pm[-3:])
#print(seq[pm[0]] + str(pm[0]) + pm[1])
print('...Generating primers for ' + str(len(potential_mutations)) + ' potential silent mutation(s)\n')
for pm in potential_mutations:
mut_site, new_nt = int(pm[3:-3]), pm[-3:]
potential_primers_f, potential_primers_r = generate_GG_PMut_primers(seq, mut_site, new_nt)
potential_overhangs = np.array([find_bsmbi_overhangs(i)[0] for i in potential_primers_f])
for primer_number in range(len(potential_primers_f)):
str_id = pm + '_' + str(primer_number + 1)
po = potential_overhangs[primer_number]
overhang_seq[str_id] = po
f_prim = potential_primers_f[primer_number]
forward_primer_seq[str_id] = f_prim
r_prim = potential_primers_r[primer_number]
reverse_primer_seq[str_id] = r_prim
sub_primer_set.append(str_id)
primer_sets.append(sub_primer_set)
primer_sets.append(['REV'])
overhang_seq['REV'] = find_bsmbi_overhangs(r1)[0]
#########################################################
# Test 10000 random combinations for overhang compatibility
# and choose best option
#########################################################
if verbose == True:
print('\n=====================================================')
print('Designing ' + str(number_reactions_needed(seq)) + ' PCR reaction(s)...')
print('=====================================================\n')
np.random.seed(0)
still_looking = True
count = 0
while (still_looking == True) and (count <= 1000):
if verbose:
print('Testing iteration: ' + str(count + 1))
rand_prim_set = [i[np.random.randint(len(i))] for i in primer_sets]
rand_prim_set_OH_for = np.array([overhang_seq[i] for i in rand_prim_set])
rand_prim_set_OH_rev = np.array([reverse_complement(overhang_seq[i]) for i in rand_prim_set])
rand_prim_set_OH = np.concatenate([rand_prim_set_OH_for, rand_prim_set_OH_rev])
N = len(rand_prim_set_OH)
# check that no overhangs share three consecutive bases that are the same
# this also covers the case of identitical primers
fail_condition_1 = []
for a in range(N):
rp_a = rand_prim_set_OH[a]
for b in range(a + 1, N):
rp_b = rand_prim_set_OH[b]
fail_condition_1.append((rp_a[:-1] in rp_b) | (rp_a[1:] in rp_b))
# check that no overhangs differ in only one base pair (e.g. TAAG and TTAG)?
fail_condition_2 = []
for a in range(N):
rp_a = rand_prim_set_OH[a]
for b in range(a + 1, N):
rp_b = rand_prim_set_OH[b]
b = np.sum(np.array([nuc for nuc in rp_a]) == np.array([nuc for nuc in rp_b])) >= 3
fail_condition_2.append(b)
# check that no overhang has GC content of 0% or 100%.
fail_condition_3 = []
for rp in rand_prim_set_OH:
gc_content = np.sum(np.array([(nuc in 'CGcg') for nuc in rp]))
fail_condition_3.append(gc_content == 0)
if verbose:
print('Found ' + str((np.sum(fail_condition_1) + np.sum(fail_condition_2) + np.sum(fail_condition_3))) + ' exceptions')
if (np.sum(fail_condition_1) + np.sum(fail_condition_2) + np.sum(fail_condition_3)) > 0:
if verbose:
print(' Failed, Trying Next Primer Set...')
still_looking = True
count += 1
else:
if verbose:
print(' Found a set!')
best_set = rand_prim_set
still_looking = False
decision_forward_primers = [f1]
decision_reverse_primers = []
if verbose:
print('Results: ', best_set, '\n')
for i in best_set[1:-1]:
decision_forward_primers.append(forward_primer_seq[i])
decision_reverse_primers.append(reverse_primer_seq[i])
decision_reverse_primers.append(r1)
if verbose:
print('Overhangs: ', rand_prim_set_OH, '\n')
prod_sizes = expected_product_sizes(seq)
if verbose == True:
for i in range(len(prod_sizes)):
print('PCR Reaction ' + str(i + 1) + ', Expected Size: ' + str(prod_sizes[i]) + ' bp')
print('Forward Primer:')
print(decision_forward_primers[i])
print('Reverse Primer:')
print(decision_reverse_primers[i])
print()
# figure out the new sequence for optional generation of a genbank file
output_seq = seq
for i in best_set[1:-1]:
pm = i.split('_')[0]
print(pm[:3], pm[3:-3], pm[-3:])
N = int(pm[3:-3])
output_seq = output_seq[:N] + pm[-3:] + output_seq[N + 3:]
part_specific_f = part_end_dict[str(part_num) + 'forward']
part_specific_r = part_end_dict[str(part_num) + 'reverse']
bsmbi_for_sites, bsmbi_rev_sites, bsai_for_sites, bsai_rev_sites = find_restriction_sites(part_specific_f)
bsai_overhang_front = part_specific_f[bsai_for_sites[-1] + 7:]
bsmbi_for_sites, bsmbi_rev_sites, bsai_for_sites, bsai_rev_sites = find_restriction_sites(part_specific_r)
bsai_overhang_rear = reverse_complement(part_specific_r[bsai_for_sites[-1] + 7:])
output_seq = bsai_overhang_front + output_seq + bsai_overhang_rear
return(decision_forward_primers, decision_reverse_primers, output_seq)
def generate_order_form(primers, prefix):
# meant to take as input the output of the function above
primers_f, primers_r = primers
n = len(primers_f)
for i in range(n):
print(prefix + '_P' + str('{:02d}'.format(i+1)) + '_F\t' + primers_f[i][0:60] + '\t25nm\tSTD')
print(prefix + '_P' + str('{:02d}'.format(i+1)) + '_R\t' + primers_r[i][0:60] + '\t25nm\tSTD')
print('\n')
for i in range(n):
print(prefix + '_P' + str('{:02d}'.format(i+1)) + '_F, ' + primers_f[i][0:60])
print(prefix + '_P' + str('{:02d}'.format(i+1)) + '_R, ' + primers_r[i][0:60])
def generate_gb_file(insert_seq, unchanged_input, part_type, insert_name, plasmid_name):
#######################################################################
# Generate a genbank file with your domesticated insert of interest in
# the MTK0_027 backbone
#######################################################################
save_to_directory = '' # <- REPLACE THIS WITH AN APPROPRIATE LOCATION
pre_insert = 'tcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtgGGTCTCa'
post_insert = 'tGAGACCagaccaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggagttctgaggtcattactggatctatcaacaggagtccaagcgagctcgatatcaaattacgccccgccctgccactcatcgcagtactgttgtaattcattaagcattctgccgacatggaagccatcacaaacggcatgatgaacctgaatcgccagcggcatcagcaccttgtcgccttgcgtataatatttgcccatggtgaaaacgggggcgaagaagttgtccatattggccacgtttaaatcaaaactggtgaaactcacccagggattggctgaaacgaaaaacatattctcaataaaccctttagggaaataggccaggttttcaccgtaacacgccacatcttgcgaatatatgtgtagaaactgccggaaatcgtcgtggtattcactccagagcgatgaaaacgtttcagtttgctcatggaaaacggtgtaacaagggtgaacactatcccatatcaccagctcaccgtctttcattgccatacgaaattccggatgagcattcatcaggcgggcaagaatgtgaataaaggccggataaaacttgtgcttatttttctttacggtctttaaaaaggccgtaatatccagctgaacggtctggttataggtacattgagcaactgactgaaatgcctcaaaatgttctttacgatgccattgggatatatcaacggtggtatatccagtgatttttttctccattttagcttccttagctcctgaaaatctcgataactcaaaaaatacgcccggtagtgatcttatttcattatggtgaaagttggaacctcttacgtgcccgatcaa'
full_sequence = pre_insert + insert_seq + post_insert
bp_length = str(len(full_sequence))
insert_length = len(insert_seq)
today = date.today()
date_string = today.strftime("%d-%b-%Y").upper()
camRTerm_seq = 'accaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggagttctgaggtcattactggatctatcaacaggagtccaagcgagctcgatatcaaa'
camR_seq = 'ttacgccccgccctgccactcatcgcagtactgttgtaattcattaagcattctgccgacatggaagccatcacaaacggcatgatgaacctgaatcgccagcggcatcagcaccttgtcgccttgcgtataatatttgcccatggtgaaaacgggggcgaagaagttgtccatattggccacgtttaaatcaaaactggtgaaactcacccagggattggctgaaacgaaaaacatattctcaataaaccctttagggaaataggccaggttttcaccgtaacacgccacatcttgcgaatatatgtgtagaaactgccggaaatcgtcgtggtattcactccagagcgatgaaaacgtttcagtttgctcatggaaaacggtgtaacaagggtgaacactatcccatatcaccagctcaccgtctttcattgccatacgaaattccggatgagcattcatcaggcgggcaagaatgtgaataaaggccggataaaacttgtgcttatttttctttacggtctttaaaaaggccgtaatatccagctgaacggtctggttataggtacattgagcaactgactgaaatgcctcaaaatgttctttacgatgccattgggatatatcaacggtggtatatccagtgatttttttctccat'
camRProm_seq = 'tttagcttccttagctcctgaaaatctcgataactcaaaaaatacgcccggtagtgatcttatttcattatggtgaaagttggaacctcttacgtgcccgatcaa'
camRTerm_position = full_sequence.find(camRTerm_seq) + 1
camR_position = full_sequence.find(camR_seq) + 1
camRProm_position = full_sequence.find(camRProm_seq) + 1
L0 = f'LOCUS {plasmid_name} {bp_length} bp ds-DNA circular {date_string}' #19-MAR-2021
L1 = f'DEFINITION Mammalian toolkit cloning part type {part_type} containing {insert_name}'
L2 = 'ACCESSION <unknown id> '
L3 = 'VERSION <unknown id> '
L4 = 'FEATURES Location/Qualifiers'
L5 = ' rep_origin complement(1..764)'
L6 = ' /label="ColE1"'
L7 = ' /ApEinfo_revcolor=#7f7f7f'
L8 = ' /ApEinfo_fwdcolor=#7f7f7f'
L9 = f' misc_feature 777..{str(777 + len(unchanged_input) - 1)}'
#L9 = f' misc_feature 777..{str(777 + int(insert_length - 8 - 1))}'
L10 = f' /label="{insert_name}"'
L11 = f' misc_feature complement({camRTerm_position}..{camRTerm_position + len(camRTerm_seq) - 1})'
L12 = ' /label="CamR Terminator"'
L13 = ' /ApEinfo_revcolor=#84b0dc'
L14 = ' /ApEinfo_fwdcolor=#84b0dc'
L15 = f' CDS complement({camR_position}..{camR_position + len(camR_seq) - 1})'
L16 = ' /label="CamR"'
L17 = ' /ApEinfo_revcolor=#0000ff'
L18 = ' /ApEinfo_fwdcolor=#0000ff'
L19 = f' promoter complement({camRProm_position}..{camRProm_position + len(camRProm_seq) - 1})'
L20 = ' /label="CamR Promoter"'
L21 = ' /ApEinfo_revcolor=#84b0dc'
L22 = ' /ApEinfo_fwdcolor=#84b0dc'
L23 = ' '
L24 = 'ORIGIN'
gb_line_compilation = [L0, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24]
seq_to_print = full_sequence.lower()
groups_of_10 = [seq_to_print[(10*i):(10*(i+1))] for i in range(1 + len(seq_to_print)//10)]
for i in range(len(groups_of_10)//6 + 1):
nucs_so_far = str(60*i + 1)
spacer = ''
for s in range(5 - len(nucs_so_far)):
spacer += ' '
line_string = spacer + nucs_so_far + ' '
for k in range(6):
try:
line_string += groups_of_10[6*i + k] + ' '
except:
pass
gb_line_compilation.append(line_string)
gb_line_compilation.append('//')
file_path = save_to_directory + plasmid_name + '.gb'
f = open(file_path, 'w')
f.writelines(line + '\n' for line in gb_line_compilation)
f.close()
# get a sorted list of all currently supported parts
def get_parts():
parts = []
for key in part_end_dict.keys():
if "forward" in key:
parts.append(key.replace("forward", ""))
parts.sort()
return parts
if __name__ == "__main__":
seq = input("Enter desired nucleotide sequence (in frame if CDS)\n")
seq_name = input('What is the name (annotation) of the nucleotide sequence\n')
part_type = input("Enter desired part type ({})\n".format(", ".join(get_parts())))
prefix = input("Enter a prefix for primer order form\n")
print('Sequence is ' + str(len(seq)) + ' nucleotides')
primers_f, primers_r, output_sequence = generate_GG_protocol(seq, part_type, True)
primers = [primers_f, primers_r]
generate_order_form(primers, prefix)
plasmid_name = 'MTK' + part_type + '_' + seq_name
generate_gb_file(output_sequence, seq, part_type, seq_name, plasmid_name)