-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path124_BinaryTreeMaximumPathSum.java
68 lines (58 loc) · 1.81 KB
/
124_BinaryTreeMaximumPathSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// Given a binary tree, find the maximum path sum.
// The path may start and end at any node in the tree.
// For example:
// Given the below binary tree,
// 1
// / \
// 2 3
// Return 6.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
int res;
public int maxPathSum(TreeNode root) {
res = Integer.MIN_VALUE;
helper(root);
return res;
}
public int helper(TreeNode root) {
if(root == null) return 0;
int l = Math.max(0, helper(root.left));
int r = Math.max(0, helper(root.right));
res = Math.max(l + r + root.val, res);
return Math.max(l, r) + root.val;
}
}
//更6
// Here's my ideas:
// A path from start to end, goes up on the tree for 0 or more steps,
// then goes down for 0 or more steps. Once it goes down, it can't go up.
// Each path has a highest node, which is also the lowest common ancestor
// of all other nodes on the path.
// // A recursive method maxPathDown(TreeNode node) (1) computes the maximum
// path sum with highest node is the input node, update maximum if n
// ecessary (2) returns the maximum sum of the path that can be extended
// to input node's parent.
// Code:
public class Solution {
int maxValue;
public int maxPathSum(TreeNode root) {
maxValue = Integer.MIN_VALUE;
maxPathDown(root);
return maxValue;
}
private int maxPathDown(TreeNode node) {
if (node == null) return 0;
int left = Math.max(0, maxPathDown(node.left));
int right = Math.max(0, maxPathDown(node.right));
maxValue = Math.max(maxValue, left + right + node.val);
return Math.max(left, right) + node.val;
}
}