-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathdataset_grasp.py
103 lines (81 loc) · 3.47 KB
/
dataset_grasp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os.path
import re,yaml,os,sys
import numpy as np
from collections import defaultdict
import os,sys,copy,time,cv2,pickle,gzip
from scipy.signal import convolve2d
code_dir = os.path.dirname(os.path.realpath(__file__))
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from dexnet.grasping.gripper import RobotGripper
from PIL import Image
from Utils import *
from data_reader import *
from augmentations import *
import matplotlib.pyplot as plt
class GraspDataset(torch.utils.data.Dataset):
def __init__(self,cfg,phase,class_name=None):
super().__init__()
self.cfg = cfg
self.phase = phase
if class_name is not None:
self.class_name = class_name
else:
self.class_name = cfg['class_name']
self.symmetry_tfs = get_symmetry_tfs(self.class_name)
self.symmetry_tfs = np.array(self.symmetry_tfs)
if self.phase=='train':
self.files = sorted(glob.glob(f"{code_dir}/{self.cfg['train_root']}/*grasp.pkl"))
elif self.phase=='val':
self.files = sorted(glob.glob(f"{code_dir}/{self.cfg['val_root']}/*grasp.pkl"))
elif self.phase=='test':
self.files = []
else:
raise RuntimeError
self.keys = []
for file in self.files:
color_file = file.replace('grasp.pkl','rgb.png')
with gzip.open(file,'rb') as ff:
grasps = pickle.load(ff)
for body_id,vv in grasps.items():
for i_grasp in range(len(vv)):
grasp_in_cam,score = vv[i_grasp]
self.keys.append((color_file,body_id,grasp_in_cam,score))
ids = np.random.choice(len(self.keys),size=min(200000,len(self.keys)),replace=False)
self.keys = np.array(self.keys)[ids]
self.classes = np.array(self.cfg['classes'])
print("phase={} #self.keys={}".format(self.phase,len(self.keys)))
def __len__(self):
return len(self.keys)
def transform(self,data,grasp_pose):
valid_mask = data['cloud_xyz'][:,2]>=0.1
data['cloud_xyz'] = data['cloud_xyz'][valid_mask].reshape(-1,3)
data['cloud_normal'] = data['cloud_normal'][valid_mask].reshape(-1,3)
############ Transform to grasp frame
data['cloud_xyz'] = (np.linalg.inv(grasp_pose)@to_homo(data['cloud_xyz']).T).T[:,:3]
data['cloud_normal'] = (np.linalg.inv(grasp_pose[:3,:3])@data['cloud_normal'].T).T
replace = data['cloud_xyz'].shape[0]<self.cfg['n_pts']
ids = np.random.choice(np.arange(data['cloud_xyz'].shape[0]),size=(self.cfg['n_pts']),replace=replace)
data['cloud_xyz'] = data['cloud_xyz'][ids]
data['cloud_normal'] = data['cloud_normal'][ids].reshape(-1,3)
############# Augmentations
if self.phase=='train':
data = FlipCloud(self.cfg)(data,axis=['y'])
data['cloud_xyz_original'] = copy.deepcopy(data['cloud_xyz'])
data['input'] = np.concatenate((data['cloud_xyz'],data['cloud_normal']), axis=-1)
if 'mean' in self.cfg:
data['input'] = (data['input']-self.cfg['mean'].reshape(1,-1)) / (self.cfg['std'].reshape(1,-1)+1e-15)
for k in ['color_file','cloud_rgb','cloud_nocs']:
if k in data:
del data[k]
return data
def __getitem__(self,index):
color_file,body_id,grasp_pose,score = self.keys[index]
with gzip.open(color_file.replace('/train/','/train_isolated_nunocs/').replace('/test/','/test_isolated_nunocs/').replace('rgb.png','_seg{}.pkl'.format(body_id)),'rb') as ff:
data = pickle.load(ff)
data['score'] = np.digitize(score, self.classes)-1
data = self.transform(data,grasp_pose)
return data