forked from tlapack/tlapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_unm2l.cpp
111 lines (90 loc) · 2.98 KB
/
test_unm2l.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/// @file test_unm2l.cpp
/// @author Thijs Steel, KU Leuven, Belgium
/// @brief Test unml2
//
// Copyright (c) 2021-2023, University of Colorado Denver. All rights reserved.
//
// This file is part of <T>LAPACK.
// <T>LAPACK is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
// Test utilities and definitions (must come before <T>LAPACK headers)
#include "testutils.hpp"
// Auxiliary routines
#include <tlapack/lapack/lacpy.hpp>
#include <tlapack/lapack/lange.hpp>
// Other routines
#include <tlapack/blas/gemm.hpp>
#include <tlapack/lapack/geql2.hpp>
#include <tlapack/lapack/ung2l.hpp>
#include <tlapack/lapack/unm2l.hpp>
using namespace tlapack;
TEMPLATE_TEST_CASE("Multiply m-by-n matrix with orthogonal QL factor",
"[unm2l]",
TLAPACK_TYPES_TO_TEST)
{
using matrix_t = TestType;
using T = type_t<matrix_t>;
using idx_t = size_type<matrix_t>;
using range = pair<idx_t, idx_t>;
typedef real_type<T> real_t;
// Functor
Create<matrix_t> new_matrix;
// MatrixMarket reader
MatrixMarket mm;
idx_t m = GENERATE(5, 10);
idx_t n = GENERATE(1, 5, 10);
idx_t k = min(m, n);
idx_t k2 = GENERATE(1, 4, 5, 10);
Side side = GENERATE(Side::Left, Side::Right);
Op trans = GENERATE(Op::NoTrans, Op::ConjTrans);
idx_t mc, nc;
if (side == Side::Left) {
mc = m;
nc = k2;
}
else {
mc = k2;
nc = m;
}
const real_t eps = ulp<real_t>();
const real_t tol = real_t(100.0 * max(mc, nc)) * eps;
std::vector<T> A_;
auto A = new_matrix(A_, m, n);
std::vector<T> C_;
auto C = new_matrix(C_, mc, nc);
std::vector<T> Q_;
auto Q = new_matrix(Q_, m, m);
std::vector<T> tau(k);
mm.random(A);
mm.random(C);
DYNAMIC_SECTION("m = " << m << " n = " << n << " side = " << side
<< " trans = " << trans << " k2 = " << k2)
{
// QL factorization
geql2(A, tau);
// Calculate the result of unm2l using ung2l and gemm
for (idx_t j = 0; j < k; ++j)
for (idx_t i = 0; i < m; ++i)
Q(i, m - k + j) = A(i, n - k + j);
ung2l(Q, tau);
std::vector<T> Wq_;
auto Wq = new_matrix(Wq_, m, m);
auto orth_Q = check_orthogonality(Q, Wq);
CHECK(orth_Q <= tol);
std::vector<T> Cq_;
auto Cq = new_matrix(Cq_, mc, nc);
laset(GENERAL, T(0.), T(0.), Cq);
if (side == Side::Left)
gemm(trans, NO_TRANS, T(1.), Q, C, T(0.), Cq);
else
gemm(NO_TRANS, trans, T(1.), C, Q, T(0.), Cq);
// Run the routine we are testing
unm2l(side, trans, cols(A, range(n - k, n)), tau, C);
// Compare results
for (idx_t j = 0; j < nc; ++j)
for (idx_t i = 0; i < mc; ++i)
C(i, j) -= Cq(i, j);
real_t repres = lange(MAX_NORM, C);
CHECK(repres <= tol);
}
}