-
Notifications
You must be signed in to change notification settings - Fork 0
/
Inverse-functions.tex
43 lines (38 loc) · 1.22 KB
/
Inverse-functions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
\Section{Inverse functions}
Given a function $f$, recall that the inverse function $f^{-1}$ is defined by
\begin{equation*}
f^{-1}(y) = \text{ the $x$ that solves } f(x) = y
\end{equation*}
This is a special use of the superscript $-1$ and it \emph{does not} mean an ordinary power of $-1$.
Note that the inverse function for $f^{-1}$ is the original $f$.
\begin{ProblemSet}
\begin{Problem}
What is the inverse of the function $f(x) = x^3$?
\end{Problem}
\begin{Problem}
What is the inverse of the function
\begin{LeftEquation}
f(x) = \frac{1}{x^{\nicefrac{1}{5}}}?
\end{LeftEquation}
\end{Problem}
\end{ProblemSet}
Inverse functions can be used to solve equations, because
$f$ and $f^{-1}$ undo each other:
\begin{equation*}
f^{-1}\big( f(z) \big) = z
\text{ and }
f\big( f^{-1}(w) \big) = w
\end{equation*}
Solve these equations for $x$.
Assume that $f$ is some function whose inverse is $f^{-1}$.
Your answers might refer to $f$ or $f^{-1}$.
\begin{ProblemSet}[pencil space=2.5in]
\EqProb{f(4 + x) = 5}
\EqProb{10 - \frac{4}{f(2 x)} = 3}
\EqProb{2 \cdot f^{-1}(3 - x) = 8}
\EqProb{-6 = \frac{2}{f^{-1}(4 x) - 3}}
\end{ProblemSet}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Business-calculus-workbook"
%%% End: