-
Notifications
You must be signed in to change notification settings - Fork 13
/
app.py
130 lines (106 loc) · 4.05 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from flask import Flask, request, jsonify
from werkzeug.exceptions import BadRequest
from werkzeug.utils import secure_filename
import argparse
import sys
import time
import numpy as np
import tensorflow as tf
ALLOWED_EXTENSIONS = set(['jpeg'])
app = Flask(__name__)
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,
input_mean=0, input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
# only supporting .jpeg right now
image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
@app.route('/<path:path>', methods=["POST"])
def analyze_photo(path):
"""
Take the input image.
Return the model's analysis of the image.
"""
# check if the post request has the file part
if 'file' not in request.files:
return BadRequest("File not present in request")
file = request.files['file']
if file.filename == '':
return BadRequest("Filename is not present in request")
if not allowed_file(file.filename):
return BadRequest("Invalid file type")
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
print("Looking good so far")
print(filename)
input_filepath = os.path.join(filename)
file.save(input_filepath)
model_file="/model/output_graph.pb"
label_file="/model/output_labels.txt"
input_height = 299
input_width = 299
input_mean = 128
input_std = 128
graph = load_graph(model_file)
t = read_tensor_from_image_file(input_filepath,
input_height=input_height,
input_width=input_width,
input_mean=input_mean,
input_std=input_std)
input_layer = "Mul"
output_layer = "final_result"
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name)
output_operation = graph.get_operation_by_name(output_name)
with tf.Session(graph=graph) as sess:
start = time.time()
results = sess.run(output_operation.outputs[0],
{input_operation.outputs[0]: t})
end = time.time()
results = np.squeeze(results)
top_k = results.argsort()[-5:][::-1]
labels = load_labels(label_file)
seconds = round(end-start, 3)
print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start))
resp = {}
resp["seconds"] = seconds
answer = {}
for i in top_k:
# print(labels[i], results[i])
answer[labels[i]] = float(results[i])
resp["answer"] = answer
os.remove(input_filepath)
response = jsonify(resp)
response.status_code = 200
return response
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
if __name__ == '__main__':
app.run(host='0.0.0.0')