-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatautils.py
85 lines (72 loc) · 3.12 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler, MinMaxScaler
def load_forecast_npy(name, univar=False):
data = np.load(f'datasets/{name}.npy')
if univar:
data = data[: -1:]
train_slice = slice(None, int(0.6 * len(data)))
valid_slice = slice(int(0.6 * len(data)), int(0.8 * len(data)))
test_slice = slice(int(0.8 * len(data)), None)
scaler = StandardScaler().fit(data[train_slice])
data = scaler.transform(data)
data = np.expand_dims(data, 0)
pred_lens = [24, 48, 96, 288, 672]
return data, train_slice, valid_slice, test_slice, scaler, pred_lens, 0
def _get_time_features(dt):
return np.stack([
dt.minute.to_numpy(),
dt.hour.to_numpy(),
dt.dayofweek.to_numpy(),
dt.day.to_numpy(),
dt.dayofyear.to_numpy(),
dt.month.to_numpy(),
dt.weekofyear.to_numpy(),
], axis=1).astype(np.float)
def load_forecast_csv(name, univar=False):
data = pd.read_csv(f'datasets/{name}.csv', index_col='date', parse_dates=True)
dt_embed = _get_time_features(data.index)
n_covariate_cols = dt_embed.shape[-1]
if univar:
if name in ('ETTh1', 'ETTh2', 'ETTm1', 'ETTm2'):
data = data[['OT']]
elif name == 'electricity':
data = data[['MT_001']]
elif name == 'WTH':
data = data[['WetBulbCelsius']]
else:
data = data.iloc[:, -1:]
data = data.to_numpy()
if name == 'ETTh1' or name == 'ETTh2':
train_slice = slice(None, 12 * 30 * 24)
valid_slice = slice(12 * 30 * 24, 16 * 30 * 24)
test_slice = slice(16 * 30 * 24, 20 * 30 * 24)
elif name == 'ETTm1' or name == 'ETTm2':
train_slice = slice(None, 12 * 30 * 24 * 4)
valid_slice = slice(12 * 30 * 24 * 4, 16 * 30 * 24 * 4)
test_slice = slice(16 * 30 * 24 * 4, 20 * 30 * 24 * 4)
elif name.startswith('M5'):
train_slice = slice(None, int(0.8 * (1913 + 28)))
valid_slice = slice(int(0.8 * (1913 + 28)), 1913 + 28)
test_slice = slice(1913 + 28 - 1, 1913 + 2 * 28)
else:
train_slice = slice(None, int(0.6 * len(data)))
valid_slice = slice(int(0.6 * len(data)), int(0.8 * len(data)))
test_slice = slice(int(0.8 * len(data)), None)
scaler = StandardScaler().fit(data[train_slice])
data = scaler.transform(data)
if name in ('electricity') or name.startswith('M5'):
data = np.expand_dims(data.T, -1) # Each variable is an instance rather than a feature
else:
data = np.expand_dims(data, 0)
if n_covariate_cols > 0:
dt_scaler = StandardScaler().fit(dt_embed[train_slice])
dt_embed = np.expand_dims(dt_scaler.transform(dt_embed), 0)
data = np.concatenate([np.repeat(dt_embed, data.shape[0], axis=0), data], axis=-1)
if name in ('ETTh1', 'ETTh2', 'electricity', 'WTH'):
pred_lens = [24, 48, 168, 336, 720]
elif name.startswith('M5'):
pred_lens = [28]
else:
pred_lens = [24, 48, 96, 288, 672]
return data, train_slice, valid_slice, test_slice, scaler, pred_lens, n_covariate_cols