This repository has been archived by the owner on Aug 9, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathores_archaeologist.py
675 lines (502 loc) · 28.6 KB
/
ores_archaeologist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
#!/usr/bin python3.6
import fire
import pickle
import os
import re
import pandas as pd
import subprocess
import sys
import io
from helper import *
import numpy as np
import shutil
from functools import partial
import psutil
import datetime
tmp_scores_file = 'tmp_revision_scores.csv'
if os.path.exists(tmp_scores_file):
os.remove(tmp_scores_file)
siteList = dict(pickle.load(open("data/wikimedia_sites.pickle",'rb')))
call_log = "syscalls.sh"
# loop here sleep before we check for a hang.
def tryWaitKill(proc):
try:
proc.wait(30)
except psutil.TimeoutExpired as e:
if proc.status() == psutil.STATUS_ZOMBIE:
return False
# check if all child processes are stuck
children = proc.children(recursive=True)
active = []
for p in children:
try:
active.append(p.cpu_percent(0.2) > 0.2)
except psutil.NoSuchProcess as e:
active.append(True)
if not any(active):
return False
else:
tryWaitKill(proc)
return True
def reap_children(proc, timeout=3):
"Tries hard to terminate and ultimately kill all the children of this process."
def on_terminate(proc):
print("process {} terminated with exit code {}".format(proc, proc.returncode))
procs = proc.children(recursive=True)
# send SIGTERM
for p in procs:
try:
p.terminate()
except psutil.NoSuchProcess:
pass
gone, alive = psutil.wait_procs(procs, timeout=timeout, callback=on_terminate)
if alive:
# send SIGKILL
for p in alive:
print("process {} survived SIGTERM; trying SIGKILL".format(p))
try:
p.kill()
except psutil.NoSuchProcess:
pass
gone, alive = psutil.wait_procs(alive, timeout=timeout, callback=on_terminate)
if alive:
# give up
for p in alive:
print("process {} survived SIGKILL; giving up".format(p))
def tryparsefloat(s):
try:
return float(s)
except (ValueError, TypeError) as e:
return s
class Ores_Archaeologist(object):
def __init__(self):
self.cache_file = "data/revscoring_cache.pickle"
def _call_and_retry(self, call, max_retries=5):
while max_retries > 0 :
with psutil.Popen(call, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable='/bin/bash', universal_newlines=True) as proc:
max_retries = max_retries - 1
success = tryWaitKill(proc)
print("starting process:{0}".format(call))
if not success:
# send sigterm
reap_children(proc)
continue
# then look at the process tree and see if the subprocess is stuck
(results, errors) = proc.communicate()
print(errors)
if proc.returncode == 0:
return results
return None
# try:
# (results, errors) = proc.communicate(timeout=poll_interval)
# if proc.returncode == 0:
# return results
# else:
# print(errors)
# return None
# # except subprocess.TimeoutExpired as e:
# # check stderr
# success = False
# status = proc.poll()
# if status is None:
# print("process may have stalled, trying to terminate")
# # try to terminate it and then kill it
# (results, errors) = proc.communicate()
# term_tries = 0
# while True:
# success = False
# if max_terminate_tries > 0:
# max_terminate_tries = max_terminate_tries - 1
# proc.terminate()
# try:
# proc.wait(10)
# print(errors)
# return results
# except subprocess.TimeoutExpired as e1:
# pass
# finally:
# if (success is True) or (proc.returncode == 0):
# print("success")
# if proc.returncode != 0:
# if proc.stderr:
# print(proc.stderr.read())
# if max_proc_tries < 0:
# return None
def get_threshold(self, wiki_db, date, threshold_string, outfile = None, append=True, model_type='damaging', load_environment=True, commit = None):
if threshold_string is None or threshold_string == "None":
return None
if isinstance(date,str):
date = fromisoformat(date)
if commit is None:
commit = lookup_commit_from_wiki_date(wiki_db, date)
if load_environment is True:
load_model_environment(date=date, commit=commit)
model_path = find_model_file(wiki_db, commit, model_type)
set_revscoring_version(model_path, commit)
# make sure that we run using the right virtualenv
threshold_temp = "model_thresholds.txt"
call = "source {0}/bin/activate && python3 get_model_threshold.py --model_path={1} --query=\"{2}\" --outfile={3} --append=True --commit={4} && source ./bin/activate".format(repo.working_dir, model_path, threshold_string, threshold_temp, commit)
with open(call_log,'a') as log:
log.write(call + '\n')
# poll every 5 minutes. If the proccess is dead restart it.
proc = self._call_and_retry(call)
if proc is not None:
with open(threshold_temp,'r') as f:
lines = f.readlines()
return lines[-1]
def get_all_thresholds(self, cutoffs, wiki_db, date, load_environment=False):
default_thresholds = json.load(open("data/default_thresholds.json",'r'))
def lookup_threshold(key, threshold):
if key.startswith('goodfaith'):
model_type = 'goodfaith'
else:
model_type = 'damaging'
# threshold is either False, "", "NA"
# if a given threshold is set to "false" that means that the flag is disabled.
# setting the threshold value to -100 ensures it is never the nearest threshold for a given edit.
if threshold == False or str(threshold).lower() == "false":
return -100
# is the threshold string a value?
value = tryparsefloat(threshold)
if isinstance(value, float) and not pd.isna(value):
return value
# if it's a float, but not a string, use the default
if pd.isna(value):
threshold = default_thresholds.get(key,np.nan)
if threshold is None or threshold == "None":
return -100
value = tryparsefloat(threshold)
if isinstance(value,float):
return value
res = self.get_threshold(wiki_db = row.wiki_db, date=row.deploy_dt, threshold_string = threshold, model_type = model_type, load_environment=(first & load_environment))
if res is not None:
value = res.split('\t')[1]
return tryparsefloat(value)
else:
# pre_cutoff_thresholds = default_thresholds.loc[default_thresholds.date<=row.deploy_dt]
# min_dt = pre_cutoff_thresholds.date.max()
# threshold = list(pre_cutoff_thresholds.loc[pre_cutoff_thresholds.date==min_dt,key])[0]
default = default_thresholds.get(key,np.nan)
threshold = tryparsefloat(default)
if isinstance(threshold, float):
return threshold
res = self.get_threshold(wiki_db = row.wiki_db, date=row.deploy_dt, threshold_string = threshold, model_type = model_type, load_environment=(first & load_environment))
if res is not None:
value = res.split('\t')[1]
return tryparsefloat(value)
if isinstance(cutoffs, str):
cutoffs = pd.read_csv(cutoffs)
string_value_dict = {'damaging_likelybad_max':'damaging_likelybad_max_value',
'damaging_likelybad_min':'damaging_likelybad_min_value',
'damaging_likelygood_max':'damaging_likelygood_max_value',
'damaging_likelygood_min':'damaging_likelygood_min_value',
'damaging_maybebad_max':'damaging_maybebad_max_value',
'damaging_maybebad_min':'damaging_maybebad_min_value',
'damaging_verylikelybad_max':'damaging_verylikelybad_max_value',
'damaging_verylikelybad_min':'damaging_verylikelybad_min_value',
'goodfaith_bad_max':'goodfaith_bad_max_value',
'goodfaith_bad_min':'goodfaith_bad_min_value',
'goodfaith_good_max':'goodfaith_good_max_value',
'goodfaith_good_min':'goodfaith_good_min_value',
'goodfaith_likelybad_max':'goodfaith_likelybad_max_value',
'goodfaith_likelybad_min':'goodfaith_likelybad_min_value',
'goodfaith_likelygood_max':'goodfaith_likelygood_max_value',
'goodfaith_likelygood_min':'goodfaith_likelygood_min_value',
'goodfaith_maybebad_max':'goodfaith_maybebad_max_value',
'goodfaith_maybebad_min':'goodfaith_maybebad_min_value',
'goodfaith_verylikelybad_max':'goodfaith_verylikelybad_max_value',
'goodfaith_verylikelybad_min':'goodfaith_verylikelybad_min_value'
}
output_rows = []
for k, row in cutoffs.iterrows():
first = True
for key in string_value_dict.keys():
threshold = row[key]
value = lookup_threshold(key, threshold)
row[string_value_dict[key]] = value
first = False
output_rows.append(row)
result = pd.DataFrame.from_records(output_rows)
return result
# some versions of revscoring don't handle errors properly so I need to hot-patch it.'
# basically this will be the same functionality as in revscoring.score_processor but will handle errors instead of raising them.
def score_revisions(self, wiki_db, uri, date=None, commit=None, load_environment=True, model_type='damaging', infile="<stdin>"):
if commit is None:
commit = lookup_commit_from_wiki_date(wiki_db, date)
if load_environment:
load_model_environment(date=date, commit=commit, wiki_db=wiki_db)
print(editquality_repo.git.status())
model_file = find_model_file(wiki_db, commit, model_type)
# call = "source {0}/bin/activate && python3 get_model_threshold.py --model_path={1} --query=\"{2}\" --outfile={3} --append=True --commit={4}".format(repo.working_dir, model_path, threshold_string,threshold_temp, commit)
# if model_file is None:
call = "source {0}/bin/activate".format(repo.working_dir)
# sometimes the repo doesn't get loaded the first try.
if model_file is None:
load_model_environment(date=date, commit=commit, wiki_db=wiki_db)
model_file = find_model_file(wiki_db, commit, model_type)
if model_file is None:
return None
call = call + " && {0}/bin/python3".format(repo.working_dir) + " revscoring_score_shim.py " + model_file + " --host={0} --rev-ids={1} && source ./bin/activate".format(uri, infile)
with open(call_log,'a') as log:
log.write(call + '\n')
print(call)
output = self._call_and_retry(call)
if output is None:
call = call + " && {0}/bin/python3".format(repo.working_dir) + " revscoring_score_shim.py " + model_file + " --host={0} --rev-ids={1} --io-workers=1 --cpu-workers=1 && source ./bin/activate".format(uri, infile)
print("--commit={0}".format(commit))
return output
def score_history(self, cutoff_revisions, preprocess=True, use_cache=True, add_thresholds=False):
if preprocess:
cutoff_revisions = self.preprocess_cutoff_history(cutoff_revisions)
# for period 1 use the latest model
period_1 = cutoff_revisions.loc[cutoff_revisions.period=='period1']
period_2 = cutoff_revisions.loc[cutoff_revisions.period=='period2']
time_last_commit = period_2.groupby('wiki_db').event_timestamp.max().reset_index()
last_commit = pd.merge(period_2, time_last_commit, on=['wiki_db','event_timestamp']).reset_index()
last_commit = last_commit.loc[:,['wiki_db','commit']]
period_1 = period_1.drop('commit', 1)
period_1 = pd.merge(period_1, last_commit, on=['wiki_db'], how='outer')
cutoff_revisions = pd.concat([period_1, period_2], sort=False)
for commit in set(cutoff_revisions.commit):
self.score_commit_revisions(commit, cutoff_revisions, preprocess=False, load_environment=True, use_cache=use_cache, add_thresholds=add_thresholds)
scores = pd.read_csv(tmp_scores_file, quotechar='\"', escapechar="\\", dtype={'revision_id':str})
cutoff_revisions.loc[:,"revision_id"] = cutoff_revisions.revision_id.astype(str)
# scores.set_index(['wiki_db','revision_id'],inplace=True, verify_integrity=True)
# cutoff_revisions.set_index(['wiki_db','revision_id'],inplace=True, verify_integrity=True)
# cutoff_revisions.update(scores, join='left', overwrite=True)
# cutoff_revisions.reset_index(inplace=True)
cutoff_revisions = pd.merge(cutoff_revisions, scores, on=['wiki_db','revision_id'], how='left')
scored_revids = cutoff_revisions.loc[cutoff_revisions.revscoring_error.isna(),["wiki_db", "revision_id", "prob_damaging"]]
scored_revids.to_pickle(self.cache_file)
return cutoff_revisions
def save_scores(self, all_revisions):
scored_revisions = all_revisions.loc[~ all_revisions.revision_id.isna(),['wiki_db','revision_id','prob_damaging','revscoring_error']]
with open(tmp_scores_file, 'a') as f:
scored_revisions.to_csv(f, header=f.tell() == 0, index=False, quotechar='\"',escapechar="\\")
def score_commit_revisions(self, commit, cutoff_revisions, preprocess=True, load_environment=True, use_cache=True, add_thresholds = True):
if 'pred_damaging' in cutoff_revisions.columns and not cutoff_revisions.pred_damaging.isna().any():
return cutoff_revisions
if preprocess:
cutoff_revisions = self.preprocess_cutoff_history(cutoff_revisions)
if load_environment:
load_model_environment(commit=commit)
commit_revisions = cutoff_revisions.loc[cutoff_revisions.commit == commit]
parts = []
for wiki_db in set(commit_revisions.wiki_db):
wiki_commit_revisions = commit_revisions.loc[ (commit_revisions.wiki_db == wiki_db)]
self.score_wiki_commit_revisions(commit, wiki_db, wiki_commit_revisions, preprocess=False, load_environment=False, use_cache=use_cache, add_thresholds=add_thresholds)
# We no longer pass data back up the stack. Instead we save it to a file and then do one big join at the end.
def score_wiki_commit_revisions(self, commit, wiki_db, all_revisions, preprocess=True, load_environment=True, use_cache=True, add_thresholds = False):
if preprocess:
all_revisions = self.preprocess_cutoff_history(all_revisions)
if load_environment:
load_model_environment(commit=commit, wiki_db=wiki_db)
if add_thresholds is True:
all_revisions = self.lookup_revision_thresholds(all_revisions)
all_revisions.loc[:,'prob_damaging'] = pd.np.nan
all_revisions.loc[:,'revscoring_error'] = ""
if use_cache is True:
if os.path.exists(self.cache_file):
cached_scores = pd.read_pickle(self.cache_file)
cached_scores = cached_scores.loc[~cached_scores.revision_id.isna()]
cached_scores.set_index(['wiki_db','revision_id'],inplace=True, verify_integrity=True)
all_revisions.set_index(['wiki_db','revision_id'],inplace=True, verify_integrity=True)
all_revisions.update(cached_scores, join='left', overwrite=True)
# don't score revisions we have already scored
if 'prob_damaging' in all_revisions.columns and not all_revisions.prob_damaging.isna().any():
all_revisions.reset_index(inplace=True)
self.save_scores(all_revisions)
uri = siteList[wiki_db]
all_revisions.reset_index(inplace=True)
if use_cache is False:
scored_idx = (all_revisions.wiki_db == wiki_db) & (all_revisions.commit==commit)
else:
scored_idx = (all_revisions.wiki_db == wiki_db) & (all_revisions.commit==commit) & (all_revisions.prob_damaging.isna())
wiki_db_revisions = all_revisions.loc[scored_idx]
revids = list(wiki_db_revisions.revision_id)
# write revids to a temporary file
tmpfilename = "temp_files/{0}_{1}_revids.tmp".format(commit[0:10], wiki_db)
non_int_revids = []
with open(tmpfilename,'w') as tempfile:
tempfile.write("rev_id\n")
for r in revids:
try:
r = int(r)
tempfile.write(str(r) + '\n')
except ValueError as e:
non_int_revids.append(r)
score_jsons = self.score_revisions(wiki_db, uri, commit=commit, load_environment=load_environment, model_type="damaging", infile=tmpfilename)
scores = []
if score_jsons is not None:
for line in score_jsons.split('\n'):
error = None
if line == '':
continue
fields = line.split('\t')
revid = fields[0]
if len(fields) < 2:
probability = np.NaN
else:
result = json.loads(fields[1])
if type(result) is str:
probability = None
error = result
else:
probability = result.get('probability', None)
if probability is not None:
probability = probability['true']
else:
error = line
scores.append({"revision_id":str(revid), "prob_damaging":probability, "revscoring_error":error})
for r in non_int_revids:
scores.append({"revision_id":r, "prob_damaging":None, "revscoring_error":"revid is not an integer"})
if len(scores) > 0:
scores = pd.DataFrame.from_records(scores)
all_revisions.set_index(['revision_id'], inplace=True)
scores.set_index(['revision_id'], inplace=True)
all_revisions.update(scores, join='left', overwrite=True)
else:
all_revisions.loc[:, 'prob_damaging'] = np.NaN
all_revisions.loc[:, "revscoring_error"] = "Unknown error. Check log. Process died?"
all_revisions.reset_index(inplace=True)
self.save_scores(all_revisions)
# there's only ever one wikidb here
# all the revisions must be from the same commit
# the revscoring environment must be already built
def lookup_revision_thresholds(self, revisions):
# find the correct threshold strings for these revisions
cutoffs = pd.read_csv("data/ores_rcfilters_cutoffs.csv", parse_dates=['deploy_dt'])
revisions = revisions.reset_index()
wiki_db = revisions.wiki_db[0]
cutoffs = cutoffs.loc[cutoffs.wiki_db == wiki_db]
cutoffs = cutoffs.sort_values('deploy_dt')
revisions = revisions.sort_values('event_timestamp')
revisions = pd.merge_asof(revisions, cutoffs, left_on='event_timestamp', right_on='deploy_dt', by='wiki_db', direction='backward')
deploy_dt = cutoffs.loc[cutoffs.deploy_dt <= revisions.event_timestamp.min(), 'deploy_dt'].max()
if pd.isnull(deploy_dt):
deploy_dt = cutoffs.deploy_dt.max()
commit = revisions.commit[0]
threshold_names =['damaging_likelybad_min',
'damaging_likelybad_max',
'damaging_likelygood_max',
'damaging_likelygood_min',
'damaging_maybebad_max',
'damaging_maybebad_min',
'damaging_verylikelybad_max',
'damaging_verylikelybad_min',
'goodfaith_likelybad_max',
'goodfaith_likelybad_min',
'goodfaith_likelygood_max',
'goodfaith_likelygood_min',
'goodfaith_maybebad_max',
'goodfaith_maybebad_min',
'goodfaith_verylikelybad_max',
'goodfaith_verylikelybad_min']
cutoffs = cutoffs.loc[cutoffs.deploy_dt == deploy_dt].reset_index()
# thresholds = self.get_all_thresholds(cutoffs, wiki_db=wiki_db, date=deploy_dt)
# value_names = [s+'_value' for s in threshold_names]
# revisions.assign(**dict(thresholds.loc[:,value_names + threshold_names].iloc[0]))
# revisions = pd.concat([revisions, thresholds.loc[:,value_names + threshold_names]], axis=1, sort=False)
return revisions
# if we are pre-cutoff then use scores from the latest model
# call get_thresholds
# merge and return.
def build_thresholds_table(self, infile):
cutoffs = pd.read_csv(infile,parse_dates=['deploy_dt'])
from helper import dedup_chronological
# cutoffs = dedup_chronological(cutoffs,['damaging_maybebad_min',
# 'damaging_likelybad_min',
# 'damaging_verylikelybad_min',
# 'damaging_maybebad_max',
# 'damaging_likelybad_max',
# 'damaging_verylikelybad_max'],
# datecol='deploy_dt')
cutoffs = cutoffs.sort_values(['deploy_dt'])
chunks = []
commit_wikis = {}
for wiki, dc in wiki_date_commits.items():
if wiki in set(cutoffs.wiki_db):
first_wiki_cutoff = cutoffs.loc[cutoffs.wiki_db==wiki].deploy_dt.min()
start_wiki_cutoff = cutoffs.loc[ (cutoffs.wiki_db==wiki) & (cutoffs.deploy_dt > datetime.datetime(2018,3,1))].deploy_dt
if len(start_wiki_cutoff) > 0:
start_wiki_cutoff = start_wiki_cutoff.max()
else:
start_wiki_cutoff = cutoffs.loc[cutoffs.wiki_db==wiki].deploy_dt.max()
min_dc_datetime = max(date for date, commit in dc.items() if date <=start_wiki_cutoff)
min_datetime = max(datetime.datetime(2018,3,1),
min_dc_datetime)
for date, commit in dc.items():
if date >= min_datetime:
if commit in commit_wikis:
commit_wikis[commit].append((wiki, date))
else:
commit_wikis[commit] = [(wiki, date)]
for commit, wiki_date in commit_wikis.items():
load_model_environment(date=None, commit=commit)
for wiki, date in wiki_date:
fake_cutoffs = pd.DataFrame({"wiki_db":[wiki],
"date":date,
"commit":[commit],
"deploy_dt":date}
)
# find the nearest true cutoff
fake_cutoffs = pd.merge_asof(fake_cutoffs, cutoffs, left_on="date", right_on="deploy_dt", left_by="wiki_db", right_by="wiki_db",direction='backward')
fake_cutoffs = fake_cutoffs.rename(columns={"deploy_dt_x":"deploy_dt"})
wiki_thresholds = self.get_all_thresholds(fake_cutoffs, wiki, None, load_environment=False)
chunks.append(wiki_thresholds)
return(pd.concat(chunks, 0, sort=False))
def preprocess_cutoff_history(self, cutoff_revisions):
if isinstance(cutoff_revisions,str):
cutoff_revisions = pd.read_csv(cutoff_revisions, sep=',',parse_dates=['event_timestamp','period1_start','period2_end','date_first','date_last'],quotechar='\"',infer_datetime_format=True,error_bad_lines=False,escapechar='\\')
cutoff_revisions.loc[:,"revision_id"] = cutoff_revisions.revision_id.astype(str)
# cutoff_revisions.date = pd.to_datetime(cutoff_revisions.date)
# cutoff_revisions.event_timestamp = pd.to_datetime(cutoff_revisions.event_timestamp)
# cutoff_revisions.period_start = pd.to_datetime(cutoff_revisions.period_start)
# cutoff_revisions.period_end = pd.to_datetime(cutoff_revisions.period_end)
# we need to find the right model for each
# asssign commits to cutoff_revisions
wikis_with_models = set(wiki_date_commits.keys())
cutoff_revisions = cutoff_revisions.loc[cutoff_revisions.wiki_db.isin(wikis_with_models),:]
commits = cutoff_revisions.apply(lambda row: lookup_commit_from_wiki_date(row.wiki_db, row.event_timestamp), axis=1)
cutoff_revisions.loc[:,'commit'] = commits
cutoff_revisions = cutoff_revisions.sort_values(by=['commit','wiki_db'],axis=0)
return cutoff_revisions
## TODO: use a seperate environment and interpreter for running revscoring
## use nltk assets from wheels
## get package versions from wheels
## if pip fails or the model fails check for an update to wheels.
class Ores_Archaeologist_Api():
def _wrap(self, super_func, output, *args, **kwargs):
res = super_func(*args, **kwargs)
buf = io.StringIO()
res.to_csv(buf, index=False, quotechar='\"',escapechar="\\")
csv = buf.getvalue()
if output is not None:
with open(output,'w') as of:
of.write(csv)
return csv
def build_thresholds_table(self, infile, output=None):
cls = Ores_Archaeologist()
return self._wrap(cls.build_thresholds_table, output, infile)
def score_wiki_commit_revisions(self, commit, wiki_db, all_revisions, preprocess=True, load_environment=False, wrap=False, output=None):
cls = Ores_Archaeologist()
return self._wrap(cls.score_wiki_commit_revisions, None, commit, wiki_db, all_revisions, preprocess, load_environment)
def score_commit_revisions(self, commit, cutoff_revisions, preprocess=True, load_environment=True,
wrap=False,output=None):
cls = Ores_Archaeologist()
return self._wrap(cls.score_commit_revisions, output, commit, cutoff_revisions, preprocess, load_environment)
def score_history(self, cutoff_revisions, preprocess=True, wrap=False, output=None):
cls = Ores_Archaeologist()
return self._wrap(cls.score_history, output, cutoff_revisions, preprocess)
def score_revisions(self, *args, **kwargs):
cls = Ores_Archaeologist()
return cls.score_revisions(*args, **kwargs)
def get_threshold(self, *args, **kwargs):
cls = Ores_Archaeologist()
return cls.get_threshold(*args, **kwargs)
def get_all_thresholds(self, cutoffs, output = None):
cls = Ores_Archaeologist()
return self._wrap(cls.get_all_thresholds, output, cutoffs)
if __name__ == "__main__":
fire.Fire(Ores_Archaeologist_Api)
shutil.rmtree(tmpdir)