forked from MichaelEinhorn/Composer
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomposer.py
842 lines (751 loc) · 31.5 KB
/
composer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Neural composer: Play and edit music generated by the trained model.
"""
import argparse
import math
import wave
import numpy as np
import pyaudio
import pygame
import params
import midi_utils
import keras
from keras.models import Model, load_model
from keras import backend as K
# User constants
dir_name = 'results/history/'
sub_dir_name = 'e2000/'
sample_rate = 48000
note_dt = 2000 # num samples
note_duration = 20000 # num samples
note_decay = 5.0 / sample_rate
num_params = params.num_params
num_measures = 16
num_sigmas = 5.0
note_threshold = 32
use_pca = True
is_ae = True
autosave = False
autosavenum = 1
autosavenow = False
blend = False
blendfactor = np.float32(1.0)
#0 first sond 1 first to second 2 second song 3 second to first
blendstate = 0
# colors
background_color = (210, 210, 210)
edge_color = (60, 60, 60)
slider_colors = [(90, 20, 20), (90, 90, 20), (20, 90, 20),
(20, 90, 90), (20, 20, 90), (90, 20, 90)]
note_w = 96
note_h = 96
note_pad = 2
notes_rows = int(num_measures / 8)
notes_cols = 8
slider_num = min(40, num_params)
slider_h = 200
slider_pad = 5
tick_pad = 4
control_w = 200
control_h = 30
control_pad = 5
control_num = 5
control_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (0, 255, 255), (255, 255, 0)]
control_inits = [0.75, 0.5, 0.5, 0.5, 0.5]
# derived constants
notes_w = notes_cols * (note_w + note_pad * 2)
notes_h = notes_rows * (note_h + note_pad * 2)
sliders_w = notes_w
sliders_h = slider_h + slider_pad * 2
controls_w = control_w * control_num
controls_h = control_h
window_w = max(notes_w, controls_w)
window_h = notes_h + sliders_h + controls_h
slider_w = int((window_w - slider_pad * 2) / slider_num)
notes_x = 0
notes_y = sliders_h
text_x = notes_w + 5
text_y = notes_y + 5
text_h = 40
text_w = 200
sliders_x = slider_pad
sliders_y = slider_pad
controls_x = int((window_w - controls_w) / 2)
controls_y = notes_h + sliders_h
# global variables
keyframe_paths = np.array(("song 1.txt", "song 2.txt", ))
prev_mouse_pos = None
mouse_pressed = 0
cur_slider_ix = 0
cur_control_ix = 0
volume = 3000
balance = 0.5
instrument = 0
needs_update = True
current_params = np.zeros((num_params,), dtype=np.float32)
keyframe_params = np.zeros((len(keyframe_paths),num_params),dtype=np.float32)
current_notes = np.zeros((num_measures, note_h, note_w), dtype=np.uint8)
cur_controls = np.array(control_inits, dtype=np.float32)
keyframe_controls = np.zeros((len(keyframe_paths),len(cur_controls)),dtype=np.float32)
blend_slerp = False
keyframe_magnitudes = np.zeros((len(keyframe_paths),),dtype=np.float32)
songs_loaded = False
# setup audio stream
audio = pyaudio.PyAudio()
audio_notes = []
audio_time = 0
note_time = 0
note_time_dt = 0
audio_reset = False
audio_pause = False
def audio_callback(in_data, frame_count, time_info, status):
"""
Audio call-back to influence playback of music with input.
:param in_data:
:param frame_count:
:param time_info:
:param status:
:return:
"""
global audio_time
global audio_notes
global audio_reset
global note_time
global note_time_dt
global autosavenow
global autosave
global audio_pause
global blendstate
global blendfactor
global keyframe_paths
global balance
# check if needs restart
if audio_reset:
audio_notes = []
audio_time = 0
note_time = 0
note_time_dt = 0
audio_reset = False
# check if paused
if audio_pause and status is not None:
data = np.zeros((frame_count,), dtype=np.float32)
return data.tobytes(), pyaudio.paContinue
# find and add any notes in this time window
cur_dt = note_dt
while note_time_dt < audio_time + frame_count:
measure_ix = int(note_time / note_h)
if measure_ix >= num_measures:
break
note_ix = note_time % note_h
notes = np.where(
current_notes[measure_ix, note_ix] >= note_threshold)[0]
for note in notes:
freq = 2 * 38.89 * pow(2.0, note / 12.0) / sample_rate
audio_notes.append((note_time_dt, freq, current_notes[measure_ix, note_ix, note]))
note_time += 1
note_time_dt += cur_dt
# generate the tones
data = np.zeros((frame_count,), dtype=np.float32)
for t, f, v in audio_notes:
x = np.arange(audio_time - t, audio_time + frame_count - t)
x = np.maximum(x, 0)
if instrument == 0:
w = np.sign(1 - np.mod(x * f, 2)) # Square
elif instrument == 1:
w = np.mod(x * f - 1, 2) - 1 # Sawtooth
elif instrument == 2:
w = 2 * np.abs(np.mod(x * f - 0.5, 2) - 1) - 1 # Triangle
elif instrument == 3:
w = np.sin(x * f * math.pi) # Sine
elif instrument == 4:
w = -1 * np.sign(np.mod(2*x*f,4)-2) * np.sqrt( 1-( ( np.mod(2*x*f,2)-1) *( ( np.mod(2*x*f,2)-1) ) )) # Circle
# w = np.floor(w*8)/8
w[x == 0] = 0
n = 12 * np.log (f * sample_rate / 38.89) / np.log(2);
w *= volume * np.exp(-x * note_decay) * pow(balance, (n - 60) / 12.0) / np.log(2)
if params.encode_volume:
w *= v / 255
data += w
data = np.clip(data, -32000, 32000).astype(np.int16)
# remove notes that are too old
audio_time += frame_count
audio_notes = [(t, f, v)
for t, f, v in audio_notes if audio_time < t + note_duration]
blendfactor = (np.cos( ((note_time / note_h)/num_measures) * math.pi )+1)/2
#print(blendfactor)
# reset if loop occurs
if note_time / note_h >= num_measures:
audio_time = 0
note_time = 0
note_time_dt = 0
audio_notes = []
blendstate = (blendstate+1)%(2*len(keyframe_paths))
#if blendstate == 0:
#audio_pause = True
blendfactor = 1
if autosave and not autosavenow:
autosavenow = True
# return the sound clip
return data.tobytes(), pyaudio.paContinue
def update_mouse_click(mouse_pos):
"""
Update control stated based on where the mouse clicked.
:param mouse_pos:
:return:
"""
global cur_slider_ix
global cur_control_ix
global mouse_pressed
x = (mouse_pos[0] - sliders_x)
y = (mouse_pos[1] - sliders_y)
if 0 <= x < sliders_w and 0 <= y < sliders_h:
cur_slider_ix = int(x / slider_w)
mouse_pressed = 1
x = (mouse_pos[0] - controls_x)
y = (mouse_pos[1] - controls_y)
if 0 <= x < controls_w and 0 <= y < controls_h:
cur_control_ix = int(x / control_w)
mouse_pressed = 2
def apply_controls():
"""
Change parameters based on controls.
:return:
"""
global note_threshold
global note_dt
global volume
global note_duration
global note_decay
global sample_rate
global balance
note_threshold = (1.0 - cur_controls[0]) * 200 + 10
note_dt = (1.0 - cur_controls[1]) * 1800 + 200
volume = cur_controls[2] * 6000
balance = pow(2, cur_controls[3] * 4 - 2);
note_duration = 10000 / ((1-cur_controls[4]) + 0.001)
note_decay = 10 * (1 - cur_controls[4]) / sample_rate
def update_mouse_move(mouse_pos):
"""
Update sliders/controls based on mouse input.
:param mouse_pos:
:return:
"""
global needs_update
t = 1
if int(cur_control_ix) == 0:
t = 210.0 / 200
if mouse_pressed == 1:
# change sliders
y = (mouse_pos[1] - sliders_y)
if 0 <= y <= slider_h:
val = (float(y) / slider_h - 0.5) * (num_sigmas * 2)
current_params[int(cur_slider_ix)] = val
needs_update = True
elif mouse_pressed == 2:
# change controls
x = (mouse_pos[0] - (controls_x + cur_control_ix * control_w))
if control_pad <= x <= control_w - control_pad:
val = float(x - control_pad) / (control_w - control_pad * 2)
cur_controls[int(cur_control_ix)] = val * t
apply_controls()
def draw_controls(screen):
"""
Draw volume and threshold controls to screen.
:param screen:
:return:
"""
#allows for higher threshold
t = 200.0 / 210
for i in range(control_num):
x = controls_x + i * control_w + control_pad
y = controls_y + control_pad
w = control_w - control_pad * 2
h = control_h - control_pad * 2
col = control_colors[i]
pygame.draw.rect(screen, col, (x, y, int(w * t * cur_controls[i]), h))
pygame.draw.rect(screen, (0, 0, 0), (x, y, w, h), 1)
t = 1
def draw_sliders(screen):
"""
Draw sliders to screen.
:param screen:
:return:
"""
for i in range(slider_num):
slider_color = slider_colors[i % len(slider_colors)]
x = sliders_x + i * slider_w
y = sliders_y
cx = x + slider_w / 2
cy_1 = y
cy_2 = y + slider_h
pygame.draw.line(screen, slider_color, (cx, cy_1), (cx, cy_2))
cx_1 = x + tick_pad
cx_2 = x + slider_w - tick_pad
for j in range(int(num_sigmas * 2 + 1)):
ly = y + slider_h / 2.0 + \
(j - num_sigmas) * slider_h / (num_sigmas * 2.0)
ly = int(ly)
col = (0, 0, 0) if j - num_sigmas == 0 else slider_color
pygame.draw.line(screen, col, (cx_1, ly), (cx_2, ly))
py = y + int((current_params[i] / (num_sigmas * 2) + 0.5) * slider_h)
pygame.draw.circle(screen, slider_color, (int(
cx), int(py)), int((slider_w - tick_pad) / 2))
def get_pianoroll_from_notes(notes):
"""
Draw piano roll of notes.
:param notes:
:return:
"""
output = np.full((3, int(notes_h), int(notes_w)), 64, dtype=np.uint8)
for i in range(notes_rows):
for j in range(notes_cols):
x = note_pad + j * (note_w + note_pad * 2)
y = note_pad + i * (note_h + note_pad * 2)
ix = i * notes_cols + j
measure = np.rot90(notes[ix])
played_only = np.where(measure >= note_threshold, 255, 0)
output[0, y:y + note_h, x:x +
note_w] = np.minimum(measure * (255.0 / note_threshold), 255.0)
output[1, y:y + note_h, x:x + note_w] = played_only
output[2, y:y + note_h, x:x + note_w] = played_only
return np.transpose(output, (2, 1, 0))
def draw_notes(screen, notes_surface):
"""
Draw pianoroll notes to screen.
:param screen:
:param notes_surface:
:return:
"""
pygame.surfarray.blit_array(
notes_surface, get_pianoroll_from_notes(current_notes))
measure_ix = int(note_time / note_h)
note_ix = note_time % note_h
x = notes_x + note_pad + (measure_ix % notes_cols) * \
(note_w + note_pad * 2) + note_ix
y = notes_y + note_pad + \
int(measure_ix / notes_cols) * (note_h + note_pad * 2)
pygame.draw.rect(screen, (255, 255, 0), (x, y, 4, note_h), 0)
def play():
global mouse_pressed
global current_notes
global audio_pause
global needs_update
global current_params
global prev_mouse_pos
global audio_reset
global instrument
global songs_loaded
global autosavenow
global autosavenum
global autosave
global blend
global blendstate
global blendfactor
global keyframe_params
global keyframe_controls
global keyframe_paths
global cur_controls
global keyframe_magnitudes
global blend_slerp
print("Keras version: " + keras.__version__)
K.set_image_data_format('channels_first')
print("Loading encoder...")
model = load_model(dir_name + 'model.h5')
encoder = Model(inputs=model.input,
outputs=model.get_layer('encoder').output)
decoder = K.function([model.get_layer('decoder').input, K.learning_phase()],
[model.layers[-1].output])
print("Loading gaussian/pca statistics...")
latent_means = np.load(dir_name + sub_dir_name + '/latent_means.npy')
latent_stds = np.load(dir_name + sub_dir_name + '/latent_stds.npy')
latent_pca_values = np.load(
dir_name + sub_dir_name + '/latent_pca_values.npy')
latent_pca_vectors = np.load(
dir_name + sub_dir_name + '/latent_pca_vectors.npy')
# open a window
pygame.init()
pygame.font.init()
screen = pygame.display.set_mode((int(window_w), int(window_h)))
notes_surface = screen.subsurface((notes_x, notes_y, notes_w, notes_h))
pygame.display.set_caption('Neural Composer')
# start the audio stream
audio_stream = audio.open(
format=audio.get_format_from_width(2),
channels=1,
rate=sample_rate,
output=True,
stream_callback=audio_callback)
audio_stream.start_stream()
# main loop
running = True
random_song_ix = 0
cur_len = 0
blendcycle = 0
apply_controls()
while running:
# process events
if autosavenow:
# generate random song
current_params = np.clip(np.random.normal(
0.0, 1.0, (num_params,)), -num_sigmas, num_sigmas)
needs_update = True
audio_reset = True
# save slider values
with open("results/history/autosave" + str(autosavenum)+".txt", "w") as text_file:
text_file.write(sub_dir_name + "\n")
text_file.write(str(instrument) + "\n")
for iter in cur_controls:
text_file.write(str(iter) + "\n")
for iter in current_params:
text_file.write(str(iter) + "\n")
# save song as wave
audio_pause = True
audio_reset = True
save_audio = b''
while True:
save_audio += audio_callback(None, 1024, None, None)[0]
if audio_time == 0:
break
wave_output = wave.open('results/history/autosave' + str(autosavenum)+'.wav', 'w')
wave_output.setparams(
(1, 2, sample_rate, 0, 'NONE', 'not compressed'))
wave_output.writeframes(save_audio)
wave_output.close()
audio_pause = False
autosavenum += 1
autosavenow = False
needs_update = True
audio_reset = True
blendcycle += 1
if blend and blendcycle > 10:
blendcycle = 0
if blendstate%2 == 0:
needs_update = True
current_params = np.copy(keyframe_params[int(blendstate/2)])
cur_controls = np.copy(keyframe_controls[int(blendstate/2)])
apply_controls()
elif blendstate%2 == 1:
for x in range(0,len(current_params)):
current_params[x] = (blendfactor * keyframe_params[int(blendstate/2),x]) + ((1-blendfactor)*keyframe_params[((int(blendstate/2))+1)%len(keyframe_paths),x])
if blend_slerp:
magnitude = (blendfactor * keyframe_magnitudes[int(blendstate/2)]) + ((1-blendfactor)*keyframe_magnitudes[((int(blendstate/2))+1)%len(keyframe_paths)])
current_params = current_params * ((sum(current_params*current_params)**-0.5) * magnitude)
for x in range(0,len(cur_controls)):
cur_controls[x] = (blendfactor * keyframe_controls[int(blendstate/2),x]) + ((1-blendfactor)*keyframe_controls[((int(blendstate/2))+1)%len(keyframe_paths),x])
apply_controls()
needs_update = True
for event in pygame.event.get():
if event.type == pygame.QUIT: # QUIT BUTTON HIT
running = False
break
elif event.type == pygame.MOUSEBUTTONDOWN: # MOUSE BUTTON DOWN
if pygame.mouse.get_pressed()[0]:
prev_mouse_pos = pygame.mouse.get_pos()
update_mouse_click(prev_mouse_pos)
update_mouse_move(prev_mouse_pos)
elif pygame.mouse.get_pressed()[2]:
current_params = np.zeros((num_params,), dtype=np.float32)
needs_update = True
elif event.type == pygame.MOUSEBUTTONUP: # MOUSE BUTTON UP
mouse_pressed = 0
prev_mouse_pos = None
elif event.type == pygame.MOUSEMOTION and mouse_pressed > 0: # MOUSE MOTION WHILE PRESSED
update_mouse_move(pygame.mouse.get_pos())
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_r: # KEYDOWN R
# generate random song
current_params = np.clip(np.random.normal(
0.0, 1.0, (num_params,)), -num_sigmas, num_sigmas)
needs_update = True
audio_reset = True
if event.key == pygame.K_t: # KEYDOWN T
for x in range(int(num_params/3)+1, num_params):
current_params[x] = np.clip(np.random.normal(0.0,1.0), -num_sigmas, num_sigmas)
needs_update = True
if event.key == pygame.K_x: # KEYDOWN X
# generate random song
current_params += np.clip(np.random.normal(
0.0, 0.3, (num_params,)), -num_sigmas, num_sigmas)
needs_update = True
if event.key == pygame.K_a: # KEYDOWN A
autosave = not autosave
if event.key == pygame.K_b: # KEYDOWN B
blend = not blend
blendstate = 0
blendfactor = 1.0
if blend:
audio_pause = True
audio_reset = True
needs_update = True
blendnum = int(input("The number of songs to be blended "))
keyframe_paths = []
keyframe_controls = np.zeros((blendnum,len(cur_controls)),dtype=np.float32)
keyframe_params = np.zeros((blendnum,num_params),dtype=np.float32)
for y in range(blendnum):
fileName = input("The file name of the next song to be blended ")
if "." not in fileName:
fileName = fileName + ".txt"
keyframe_paths.append((fileName))
fo = open("results/history/" + fileName, "r")
if not sub_dir_name == fo.readline()[:-1]:
running = false
print("incompatable with current model")
break
instrument = int(fo.readline())
for x in range(len(cur_controls)):
keyframe_controls[y,x] = float(fo.readline())
for x in range(len(current_params)):
keyframe_params[y,x] = float(fo.readline())
#keyframe_magnitudes[y] = sum(keyframe_params[y]*keyframe_params[y])**0.5
if event.key == pygame.K_e: # KEYDOWN E
# generate random song with larger variance
current_params = np.clip(np.random.normal(0.0, 2.0, (num_params,)), -num_sigmas, num_sigmas)
needs_update = True
audio_reset = True
if event.key == pygame.K_PERIOD:
current_params /= 1.1
needs_update = True
if event.key == pygame.K_COMMA:
current_params *= 1.1
needs_update = True
if event.key == pygame.K_SLASH:
current_params *= -1
needs_update = True
if event.key == pygame.K_UP:
cur_controls[0] = (210.0 - note_threshold + 1) / 200
apply_controls()
if event.key == pygame.K_DOWN:
cur_controls[0] = (210.0 - note_threshold - 1) / 200
apply_controls()
if event.key == pygame.K_s: # KEYDOWN S
# save slider values
audio_pause = True
fileName = input("File Name to save into ")
if "." not in fileName:
fileName = fileName + ".txt"
with open("results/history/" + fileName, "w") as text_file:
if blend:
text_file.write(sub_dir_name + "\n")
text_file.write("blended song" + "\n")
text_file.write(str(len(keyframe_paths)) + "\n")
for x in range(len(keyframe_paths)):
text_file.write("" + keyframe_paths[x] + "\n")
else:
text_file.write(sub_dir_name + "\n")
text_file.write(str(instrument) + "\n")
for iter in cur_controls:
text_file.write(str(iter) + "\n")
for iter in current_params:
text_file.write(str(iter) + "\n")
if event.key == pygame.K_l: # KEYDOWN L
audio_pause = True
needs_update = True
audio_reset = True
fileName = input("File Name to read ")
if "." not in fileName:
fileName = fileName + ".txt"
fo = open("results/history/" + fileName, "r")
print (fo.name)
if not sub_dir_name == fo.readline()[:-1]:
running = false
print("incompatable with current model")
break
tempDir = fo.readline()
if tempDir.startswith("blended song"):
blend = True
blendnum = int(fo.readline())
keyframe_paths = []
keyframe_controls = np.zeros((blendnum,len(cur_controls)),dtype=np.float32)
keyframe_params = np.zeros((blendnum,num_params),dtype=np.float32)
for y in range(blendnum):
fileName2 = fo.readline()[:-1]
keyframe_paths.append(fileName)
fo2 = open("results/history/" + fileName2, "r")
if not sub_dir_name == fo2.readline()[:-1]:
running = false
print("incompatable with current model")
break
instrument = int(fo2.readline())
for x in range(len(cur_controls)):
keyframe_controls[y,x] = float(fo2.readline())
for x in range(len(current_params)):
keyframe_params[y,x] = float(fo2.readline())
else:
instrument = int(tempDir)
for x in range(len(cur_controls)):
cur_controls[x] = float(fo.readline())
for x in range(len(current_params)):
current_params[x] = float(fo.readline())
apply_controls()
if event.key == pygame.K_o: # KEYDOWN O
if not songs_loaded:
print("Loading songs...")
try:
y_samples = np.load('data/interim/samples.npy')
y_lengths = np.load('data/interim/lengths.npy')
songs_loaded = True
except Exception as e:
print("This functionality is to check if the model training went well by reproducing an original song. "
"The composer could not load samples and lengths from model training. "
"If you have the midi files, the model was trained with, process them by using"
" the preprocess_songs.py to find the requested files in data/interim "
"(Load exception: {0}".format(e))
if songs_loaded:
# check how well the autoencoder can reconstruct a random song
print("Random Song Index: " + str(random_song_ix))
if is_ae:
example_song = y_samples[cur_len:cur_len + num_measures]
current_notes = example_song * 255
latent_x = encoder.predict(np.expand_dims(
example_song, 0), batch_size=1)[0]
cur_len += y_lengths[random_song_ix]
random_song_ix += 1
else:
random_song_ix = np.array(
[random_song_ix], dtype=np.int64)
latent_x = encoder.predict(
random_song_ix, batch_size=1)[0]
random_song_ix = (
random_song_ix + 1) % model.layers[0].input_dim
if use_pca:
current_params = np.dot(
latent_x - latent_means, latent_pca_vectors.T) / latent_pca_values
else:
current_params = (
latent_x - latent_means) / latent_stds
needs_update = True
audio_reset = True
if event.key == pygame.K_m: # KEYDOWN M
# save song as midi
audio_pause = True
audio_reset = True
fileName = input("File Name to save into ")
if "." not in fileName:
fileName = fileName + ".mid"
midi_utils.samples_to_midi(
current_notes, 'results/history/' + fileName, note_threshold)
audio_pause = False
if event.key == pygame.K_w: # KEYDOWN W
# save song as wave
audio_pause = True
audio_reset = True
fileName = input("File Name to save into ")
if "." not in fileName:
fileName = fileName + ".wav"
save_audio = b''
while True:
save_audio += audio_callback(None, 1024, None, None)[0]
if audio_time == 0:
break
wave_output = wave.open('results/history/' + fileName + '.wav', 'w')
wave_output.setparams(
(1, 2, sample_rate, 0, 'NONE', 'not compressed'))
wave_output.writeframes(save_audio)
wave_output.close()
audio_pause = False
if event.key == pygame.K_ESCAPE: # KEYDOWN ESCAPE
# exit application
running = False
break
if event.key == pygame.K_SPACE: # KEYDOWN SPACE
# toggle pause/play audio
audio_pause = not audio_pause
if event.key == pygame.K_TAB: # KEYDOWN TAB
# reset audio playing
audio_reset = True
if autosave and not autosavenow:
autosavenow = True
if event.key == pygame.K_1: # KEYDOWN 1
# play instrument 0
instrument = 0
if event.key == pygame.K_2: # KEYDOWN 2
# play instrument 1
instrument = 1
if event.key == pygame.K_3: # KEYDOWN 3
# play instrument 2
instrument = 2
if event.key == pygame.K_4: # KEYDOWN 4
# play instrument 3
instrument = 3
if event.key == pygame.K_5: # KEYDOWN 5
# play instrument 4
instrument = 4
if event.key == pygame.K_c: # KEYDOWN C
#
y = np.expand_dims(
np.where(current_notes > note_threshold, 1, 0), 0)
latent_x = encoder.predict(y)[0]
if use_pca:
current_params = np.dot(
latent_x - latent_means, latent_pca_vectors.T) / latent_pca_values
else:
current_params = (
latent_x - latent_means) / latent_stds
needs_update = True
# check if params were changed so that a new song should be generated
if needs_update:
if use_pca:
latent_x = latent_means + \
np.dot(current_params * latent_pca_values,
latent_pca_vectors)
else:
latent_x = latent_means + latent_stds * current_params
latent_x = np.expand_dims(latent_x, axis=0)
y = decoder([latent_x, 0])[0][0]
current_notes = (y * 255.0).astype(np.uint8)
needs_update = False
# draw GUI to the screen
screen.fill(background_color)
draw_notes(screen, notes_surface)
draw_sliders(screen)
draw_controls(screen)
# flip the screen buffer
pygame.display.flip()
pygame.time.wait(10)
# if app is exited, close the audio stream
audio_stream.stop_stream()
audio_stream.close()
audio.terminate()
if __name__ == "__main__":
# configure parser and parse arguments
parser = argparse.ArgumentParser(
description='Neural Composer: Play and edit music of a trained model.')
parser.add_argument('--model_path', type=str,
help='The folder the model is stored in (e.g. a folder named e and a number located in results/history/).', required=True)
args = parser.parse_args()
if args.model_path.endswith(".txt"):
fo = open("results/history/" + args.model_path, "r")
print (fo.name)
sub_dir_name = fo.readline()[:-1]
tempDir = fo.readline()
if tempDir.startswith("blended song"):
blend = True
blendnum = int(fo.readline())
keyframe_paths = []
keyframe_controls = np.zeros((blendnum,len(cur_controls)),dtype=np.float32)
keyframe_params = np.zeros((blendnum,num_params),dtype=np.float32)
for y in range(blendnum):
fileName2 = fo.readline()[:-1]
keyframe_paths.append(fileName2)
fo2 = open("results/history/" + fileName2, "r")
if not sub_dir_name == fo2.readline()[:-1]:
running = false
print("incompatable with current model")
break
instrument = int(fo2.readline())
for x in range(len(cur_controls)):
keyframe_controls[y,x] = float(fo2.readline())
for x in range(len(current_params)):
keyframe_params[y,x] = float(fo2.readline())
else:
print(sub_dir_name)
instrument = int(tempDir)
for x in range(len(cur_controls)):
cur_controls[x] = float(fo.readline())
for x in range(len(current_params)):
current_params[x] = float(fo.readline())
else:
sub_dir_name = args.model_path
play()