-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdmap_2_jpg.py
87 lines (72 loc) · 2.62 KB
/
dmap_2_jpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import h5py
def dmap_npy_jpg(npy_path, set_xy=False):
npy = np.load(npy_path, encoding='bytes', allow_pickle=True)
# npy = cv2.cvtColor(npy, cv2.COLOR_RGB2BGR)
text = 'GT Count:' + str(round(npy.sum()))
npy = npy * 255
h, w = npy.shape[0], npy.shape[1]
# cv2 版本,有点问题
# cv2.putText(npy, text, org=(10, h-10), fontScale=0.6,
# color=(1, 1, 1), thickness=1, fontFace=cv2.LINE_AA)
# cv2.imshow('dmap', npy)
# cv2.waitKey(20)
# plt版本,图层会一直跳出来
plt.ion()
plt.text(20, h - 20, text, color=(1, 1, 1))
if not set_xy:
# plt.xticks([])
# plt.yticks([])
plt.axis('off')
plt.imshow(npy, cmap=plt.cm.jet)
plt.show()
# save image
plt.savefig(npy_path.replace('.npy', '.jpg'))
plt.pause(0.2)
plt.close()
def dmap_h5_jpg(h5_path, set_xy=False):
h5 = h5py.File(h5_path, 'r')
density = h5['density'][()]
text = 'GT Count:' + str(round(density.sum()))
density = density * 255
h, w = density.shape[0], density.shape[1]
plt.text(20, h - 20, text, color=(1, 1, 1))
if not set_xy:
# plt.xticks([])
# plt.yticks([])
plt.axis('off')
plt.imshow(density, cmap=plt.cm.jet)
plt.show()
# save image
plt.savefig(h5_path.replace('.h5', '.jpg'))
plt.pause(0.2)
plt.close()
if __name__ == '__main__':
# ShangTechA 密度图的npy格式转换为jpg,并标注GT Count,并保存图片
npy_dir = r'data\part_A_final\train_data\density_map'
npy_dir = r'data\part_A_final\test_data\density_map'
npy_paths = os.listdir(npy_dir)
for npy_path in npy_paths:
if '.npy' in npy_path:
dmap_npy_jpg(os.path.join(npy_dir, npy_path), set_xy=False)
# ShanghaiTechB密度图的h5格式转换为jpg,并标注GT Count,并保存图片
train_path = r'data\part_B_final\train_data\density_map'
test_path = r'data\part_B_final\test_data\density_map'
h5_dir = [train_path, test_path]
for dir in h5_dir:
h5_paths = os.listdir(dir)
for h5_path in h5_paths:
if '.h5' in h5_path:
dmap_h5_jpg(os.path.join(dir, h5_path),set_xy=False)
# h5_path = r'E:\Crowd Counting\data\part_B_final\train_data\density_map\IMG_1.h5'
# h5 = h5py.File(h5_path, 'r')
# density = h5['density'][()]
# text = 'GT Count:' + str(round(density.sum()))
# density = density * 255
# h, w = density.shape[0], density.shape[1]
# plt.text(20, h - 20, text, color=(1, 1, 1))
# plt.imshow(density, cmap=plt.cm.jet)
# plt.show()