-
fnames: list[str] - list of complete paths to files that need to be processed
-
dims: (int, int), default: computed from fnames - dimensions of the FOV in pixels
-
fr: float, default: 30 - imaging rate in frames per second
-
decay_time: float, default: 0.4 - length of typical transient in seconds
-
dxy: (float, float) - spatial resolution of FOV in pixels per um
-
var_name_hdf5: str, default: 'mov' - if loading from hdf5 name of the variable to load
-
caiman_version: str - version of CaImAn being used
-
last_commit: str - hash of last commit in the caiman repo
-
mmap_F: list[str] - paths to F-order memory mapped files after motion correction
-
mmap_C: str - path to C-order memory mapped file after motion correction
-
rf: int or list or None, default: None - Half-size of patch in pixels. If None, no patches are constructed and the whole FOV is processed jointly. If list, it should be a list of two elements corresponding to the height and width of patches
-
stride: int or None, default: None - Overlap between neighboring patches in pixels.
-
nb_patch: int, default: 1 - Number of (local) background components per patch
-
border_pix: int, default: 0 - Number of pixels to exclude around each border.
-
low_rank_background: bool, default: True - Whether to update the background using a low rank approximation. If False all the nonzero elements of the background components are updated using hals (to be used with one background per patch)
-
del_duplicates: bool, default: False - Delete duplicate components in the overlaping regions between neighboring patches. If False, then merging is used.
-
only_init: bool, default: True - whether to run only the initialization
-
p_patch: int, default: 0 - order of AR dynamics when processing within a patch
-
skip_refinement: bool, default: False - Whether to skip refinement of components (deprecated?)
-
remove_very_bad_comps: bool, default: True - Whether to remove (very) bad quality components during patch processing
-
p_ssub: float, default: 2 - Spatial downsampling factor
-
p_tsub: float, default: 2 - Temporal downsampling factor
-
memory_fact: float, default: 1 - unitless number for increasing the amount of available memory
-
n_processes: int - Number of processes used for processing patches in parallel
-
in_memory: bool, default: True - Whether to load patches in memory
-
sn: np.array or None, default: None - noise level for each pixel
-
noise_range: [float, float], default: [.25, .5] - range of normalized frequencies over which to compute the PSD for noise determination
-
noise_method: 'mean'|'median'|'logmexp', default: 'mean' - PSD averaging method for computing the noise std
-
max_num_samples_fft: int, default: 3*1024 - Chunk size for computing the PSD of the data (for memory considerations)
-
n_pixels_per_process: int, default: 1000 - Number of pixels to be allocated to each process
-
compute_g': bool, default: False - whether to estimate global time constant
-
p: int, default: 2 - order of AR indicator dynamics
-
lags: int, default: 5 - number of lags to be considered for time constant estimation
-
include_noise: bool, default: False - flag for using noise values when estimating g
-
pixels: list, default: None - pixels to be excluded due to saturation
-
check_nan: bool, default: True - whether to check for NaNs
-
K: int, default: 30 - number of components to be found (per patch or whole FOV depending on whether rf=None)
-
SC_kernel: {'heat', 'cos', binary'}, default: 'heat' - kernel for graph affinity matrix
-
SC_sigma: float, default: 1 - variance for SC kernel
-
SC_thr: float, default: 0, - threshold for affinity matrix
-
SC_normalize: bool, default: True - standardize entries prior to computing the affinity matrix
-
SC_use_NN: bool, default: False - sparsify affinity matrix by using only nearest neighbors
-
SC_nnn: int, default: 20 - number of nearest neighbors to use
-
gSig: [int, int], default: [5, 5] - radius of average neurons (in pixels)
-
gSiz: [int, int], default: [int(round((x * 2) + 1)) for x in gSig], - half-size of bounding box for each neuron
-
center_psf: bool, default: False - whether to use 1p data processing mode. Set to true for 1p
-
ssub: float, default: 2 - spatial downsampling factor
-
tsub: float, default: 2 - temporal downsampling factor
-
nb: int, default: 1 - number of background components
-
lambda_gnmf: float, default: 1. - regularization weight for graph NMF
-
maxIter: int, default: 5 - number of HALS iterations during initialization
-
method_init: 'greedy_roi'|'corr_pnr'|'sparse_NMF'|'local_NMF' default: 'greedy_roi' - initialization method. use 'corr_pnr' for 1p processing and 'sparse_NMF' for dendritic processing.
-
min_corr: float, default: 0.85 - minimum value of correlation image for determining a candidate component during corr_pnr
-
min_pnr: float, default: 20 - minimum value of psnr image for determining a candidate component during corr_pnr
-
seed_method: str {'auto', 'manual', 'semi'} - methods for choosing seed pixels during greedy_roi or corr_pnr initialization 'semi' detects nr components automatically and allows to add more manually if running as notebook 'semi' and 'manual' require a backend that does not inline figures, e.g. %matplotlib tk
-
ring_size_factor: float, default: 1.5 - radius of ring (*gSig) for computing background during corr_pnr
-
ssub_B: float, default: 2 - downsampling factor for background during corr_pnr
-
init_iter: int, default: 2 - number of iterations during corr_pnr (1p) initialization
-
nIter: int, default: 5 - number of rank-1 refinement iterations during greedy_roi initialization
-
rolling_sum: bool, default: True - use rolling sum (as opposed to full sum) for determining candidate centroids during greedy_roi
-
rolling_length: int, default: 100 - width of rolling window for rolling sum option
-
kernel: np.array or None, default: None - user specified template for greedyROI
-
max_iter_snmf : int, default: 500 - maximum number of iterations for sparse NMF initialization
-
alpha_snmf: float, default: 100 - sparse NMF sparsity regularization weight
-
sigma_smooth_snmf : (float, float, float), default: (.5,.5,.5) - std of Gaussian kernel for smoothing data in sparse_NMF
-
perc_baseline_snmf: float, default: 20 - percentile to be removed from the data in sparse_NMF prior to decomposition
-
normalize_init: bool, default: True - whether to equalize the movies during initialization
-
options_local_NMF: dict - dictionary with parameters to pass to local_NMF initializer
-
method_exp: 'dilate'|'ellipse', default: 'dilate' - method for expanding footprint of spatial components
-
dist: float, default: 3 - expansion factor of ellipse
-
expandCore: morphological element, default: None(?) - morphological element for expanding footprints under dilate
-
nb: int, default: 1 - number of global background components
-
n_pixels_per_process: int, default: 1000 - number of pixels to be processed by each worker
-
thr_method: 'nrg'|'max', default: 'nrg' - thresholding method
-
maxthr: float, default: 0.1 - Max threshold
-
nrgthr: float, default: 0.9999 - Energy threshold
-
extract_cc: bool, default: True - whether to extract connected components during thresholding (might want to turn to False for dendritic imaging)
-
medw: (int, int) default: None - window of median filter (set to (3,)*len(dims) in cnmf.fit)
-
se: np.array or None, default: None - Morphological closing structuring element (set to np.ones((3,)*len(dims), dtype=np.uint8) in cnmf.fit)
-
ss: np.array or None, default: None - Binary element for determining connectivity (set to np.ones((3,)*len(dims), dtype=np.uint8) in cnmf.fit)
-
update_background_components: bool, default: True - whether to update the spatial background components
-
method_ls: 'lasso_lars'|'nnls_L0', default: 'lasso_lars' - 'nnls_L0'. Nonnegative least square with L0 penalty, 'lasso_lars' lasso lars function from scikit learn
-
block_size : int, default: 5000 - Number of pixels to process at the same time for dot product. Reduce if you face memory problems
-
num_blocks_per_run: int, default: 20 - Parallelization of A'*Y operation
-
normalize_yyt_one: bool, default: True - Whether to normalize the C and A matrices so that diag(C*C.T) = 1 during update spatial
-
ITER: int, default: 2 - block coordinate descent iterations
-
method_deconvolution: 'oasis'|'cvxpy'|'oasis', default: 'oasis' - method for solving the constrained deconvolution problem ('oasis','cvx' or 'cvxpy') if method cvxpy, primary and secondary (if problem unfeasible for approx solution)
-
solvers: 'ECOS'|'SCS', default: ['ECOS', 'SCS'] - solvers to be used with cvxpy, can be 'ECOS','SCS' or 'CVXOPT'
-
p: 0|1|2, default: 2 - order of AR indicator dynamics
-
memory_efficient: False
-
bas_nonneg: bool, default: True - whether to set a non-negative baseline (otherwise b >= min(y))
-
noise_range: [float, float], default: [.25, .5] - range of normalized frequencies over which to compute the PSD for noise determination
-
noise_method: 'mean'|'median'|'logmexp', default: 'mean' - PSD averaging method for computing the noise std
-
lags: int, default: 5 - number of autocovariance lags to be considered for time constant estimation
-
optimize_g: bool, default: False - flag for optimizing time constants
-
fudge_factor: float (close but smaller than 1) default: .96 - bias correction factor for discrete time constants
-
nb: int, default: 1 - number of global background components
-
verbosity: bool, default: False - whether to be verbose
-
block_size : int, default: 5000 - Number of pixels to process at the same time for dot product. Reduce if you face memory problems
-
num_blocks_per_run: int, default: 20 - Parallelization of A'*Y operation
-
s_min: float or None, default: None - Minimum spike threshold amplitude (computed in the code if used).
-
do_merge: bool, default: True - Whether or not to merge
-
thr: float, default: 0.8 - Trace correlation threshold for merging two components.
-
merge_parallel: bool, default: False - Perform merging in parallel
-
max_merge_area: int or None, default: None - maximum area (in pixels) of merged components, used to determine whether to merge components during fitting process
-
min_SNR: float, default: 2.5 - trace SNR threshold. Traces with SNR above this will get accepted
-
SNR_lowest: float, default: 0.5 - minimum required trace SNR. Traces with SNR below this will get rejected
-
rval_thr: float, default: 0.8 - space correlation threshold. Components with correlation higher than this will get accepted
-
rval_lowest: float, default: -1 - minimum required space correlation. Components with correlation below this will get rejected
-
use_cnn: bool, default: True - flag for using the CNN classifier.
-
min_cnn_thr: float, default: 0.9 - CNN classifier threshold. Components with score higher than this will get accepted
-
cnn_lowest: float, default: 0.1 - minimum required CNN threshold. Components with score lower than this will get rejected.
-
gSig_range: list or integers, default: None - gSig scale values for CNN classifier. In not None, multiple values are tested in the CNN classifier.
-
border_nan: bool or str, default: 'copy' - flag for allowing NaN in the boundaries. True allows NaN, whereas 'copy' copies the value of the nearest data point.
-
gSig_filt: int or None, default: None - size of kernel for high pass spatial filtering in 1p data. If None no spatial filtering is performed
-
is3D: bool, default: False - flag for 3D recordings for motion correction
-
max_deviation_rigid: int, default: 3 - maximum deviation in pixels between rigid shifts and shifts of individual patches
-
max_shifts: (int, int), default: (6,6) - maximum shifts per dimension in pixels.
-
min_mov: float or None, default: None - minimum value of movie. If None it get computed.
-
niter_rig: int, default: 1 - number of iterations rigid motion correction.
-
nonneg_movie: bool, default: True - flag for producing a non-negative movie.
-
num_frames_split: int, default-: 80 - split movie every x frames for parallel processing
-
num_splits_to_process_els, default: [7, None]
-
num_splits_to_process_rig, default: None
-
overlaps: (int, int), default: (24, 24) - overlap between patches in pixels in pw-rigid motion correction.
-
pw_rigid: bool, default: False - flag for performing pw-rigid motion correction.
-
shifts_opencv: bool, default: True - flag for applying shifts using cubic interpolation (otherwise FFT)
-
splits_els: int, default: 14 - number of splits across time for pw-rigid registration
-
splits_rig: int, default: 14 - number of splits across time for rigid registration
-
strides: (int, int), default: (96, 96) - how often to start a new patch in pw-rigid registration. Size of each patch will be strides + overlaps
-
upsample_factor_grid" int, default: 4 - motion field upsampling factor during FFT shifts.
-
use_cuda: bool, default: False - flag for using a GPU.
-
indices: tuple(slice), default: (slice(None), slice(None)) - Use that to apply motion correction only on a part of the FOV
-
n_channels: int, default: 2 - Number of "ring" kernels
-
use_bias: bool, default: False - Flag for using bias in the convolutions
-
use_add: bool, default: False - Flag for using an additive layer
-
pct: float between 0 and 1, default: 0.01 - Quantile used during training with quantile loss function
-
patience: int, default: 3 - Number of epochs to wait before early stopping
-
max_epochs: int, default: 100 - Maximum number of epochs to be used during training
-
width: int, default: 5 - Width of "ring" kernel
-
loss_fn: str, default: 'pct' - Loss function specification ('pct' for quantile loss function, 'mse' for mean squared error)
-
lr: float, default: 1e-3 - (initial) learning rate
-
lr_scheduler: function, default: None - Learning rate scheduler function
-
path_to_model: str, default: None - Path to saved weights (if training then path to saved model weights)
-
remove_activity: bool, default: False - Flag for removing activity of last frame prior to background extraction
-
reuse_model: bool, default: False - Flag for reusing an already trained model (saved in path to model)