Skip to content

Latest commit

 

History

History
47 lines (34 loc) · 1.88 KB

onnx.rst

File metadata and controls

47 lines (34 loc) · 1.88 KB

ONNX Support

Similar to the PyTorch front-end, FlexFlow also supports training existing ONNX models. Since both ONNX and FlexFlow use Protocol Buffer, make sure they are linked with the Protocol Buffer of the same version.

1. Export a ONNX Model to a external file

A PyTorch model can be exported to the FlexFlow model format and saved into an external file:

import onnx
import torch
import torch.nn as nn
from torch.onnx import TrainingMode

# create a PyTorch Model
class MyPyTorchModule(nn.Module):
...

# export the PyTorch model to a ONNX model
model = MyPyTorchModule()
torch.onnx.export(model, (input), "filename", export_params=False, training=TrainingMode.TRAINING)

2. Import a FlexFlow model from a external file

A FlexFlow program can directly import a previously saved ONNX model and autotune the parallelization performance for a given parallel machine:

from flexflow.torch.model import PyTorchModel

#create input tensors
dims_input = [ffconfig.get_batch_size(), 3, 32, 32]
input_tensor = ffmodel.create_tensor(dims_input, DataType.DT_FLOAT)

# create a flexflow model from the file
onnx_model = ONNXModel("cifar10_cnn.onnx")
output_tensor = onnx_model.apply(ffmodel, {"input.1": input_tensor})

# use the Python API to train the model
ffoptimizer = SGDOptimizer(ffmodel, 0.01)
ffmodel.set_sgd_optimizer(ffoptimizer)
ffmodel.compile(loss_type=LossType.LOSS_SPARSE_CATEGORICAL_CROSSENTROPY, metrics=[MetricsType.METRICS_ACCURACY, MetricsType.METRICS_SPARSE_CATEGORICAL_CROSSENTROPY])
...
ffmodel.fit(x=dataloader_input, y=dataloader_label, epochs=epochs)

More FlexFlow ONNX examples are available on GitHub.