-
Notifications
You must be signed in to change notification settings - Fork 0
/
math2101-hw6-rjw.tex
592 lines (575 loc) · 29.6 KB
/
math2101-hw6-rjw.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
\documentclass{letter}
\usepackage{enumitem}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{bm}
\usepackage[letterpaper,portrait,left=2cm,right=2cm,top=3.5cm,bottom=2cm]{geometry}
\pagestyle{fancy}
\fancyhf{}
\rhead{Robert Wagner\\July 7, 2016}
\lhead{Math 2101\\Assignment 6 revised}
\newcounter{question}
\setcounter{question}{0}
\usepackage{amsmath,amsthm}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{arrows}
% magnitude bars
\newcommand{\norm}[1]{\lvert #1 \rvert}
% explicit vector
\newcommand{\Ve}[1]{\langle #1 \rangle}
% named vector
\newcommand{\Vn}[1]{\vec{#1}}
% a line with an arrow above
\newcommand{\Line}[1]{\overrightarrow{#1}}
% equals with question mark above
\newcommand{\?}{\stackrel{?}{=}}
% formatting for questions
\newcommand\Que[1]{%
\leavevmode\noindent
#1
}
% formatting for answers
\newcommand\Ans[2][]{%
\leavevmode\noindent
{
\begin{mdframed}[backgroundcolor=blue!10]
#2
\end{mdframed}
}
}
% this is like align but squashed
\newenvironment{salign}
{\par$\!\aligned}
{\endaligned$\par}
% a matrix, parameter is column count
\newenvironment{Mat}[1]{%
\left[\begin{array}{*{#1}{r}}
}{%
\end{array}\right]
}
% a matrix, parameter is column count centered
\newenvironment{Cmat}[1]{%
\left[\begin{array}{*{#1}{c}}
}{%
\end{array}\right]
}
% an augmented matrix, with one augmented column
\newenvironment{Amat}[1]{%
\left[\begin{array}{@{}*{#1}{r}|r@{}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and n augmented columns
\newenvironment{Amat2}[1]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#1}{r}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and m augmented columns
\newenvironment{Amat3}[2]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#2}{r}}
}{%
\end{array}\right]
}
\begin{document}
\begin{enumerate}
\item Determine whether the mapping is linear. Show your work.
\begin{enumerate}
\item The derivative mapping $D:f\to f^\prime$
\Ans{
Let $\mathbb{F}$\ be a field,
let $\mathbb{X}$\ be the vector space of functions $\mathbb{F}\to\mathbb{F}$,
let $x\in\mathbb{F}$,
let $f,g\in \mathbb{X}$,
and let $c\in\mathbb{R}$.\\
Since by definition of derivative $\frac{d}{dx}\left(f(x)+g(x)\right) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
\begin{align*}
D(\Vn{f}+\Vn{g}) &= D\Vn{f} + D\Vn{g}
\shortintertext{Thus the additive property is retained.}
\shortintertext{Since by definition of derivative $\frac{d}{dx}cf(x) = c\frac{d}{dx}f(x)$}
D(c\Vn{f}) &= cD\Vn{f}
\end{align*}
Thus the scalar multiplication property is retained, and D is a linear mapping.
}
\item The scalar mapping $S:x\to cx$. (Assume $c\in\mathbb{R}$)
\Ans{
Let $x_1, x_2\in \mathbb{F}^n$\ for some $n\in\mathbb{N}$\ (an arbitrary vector field).
\begin{align*}
S(x_1) &= cx_1 \\
S(x_2) &= cx_2 \\
S(x_1)+S(x_2) &= cx_1+cx_2\\
S(x_1+x_2) &= c(x_1+x_2) = cx_1+cx_2 = S(x_1)+S(x_2)
\shortintertext{Thus the additive property is retained. Now let $d\in\mathbb{R}$.}
dS(x_1) &= d(cx_1) = cdx_1\\
S(dx_1) &= c(dx_1) = cdx_1 = d(cx_1) =
dS(x_1)
\end{align*}
Thus the scalar multiplication property is retained, and $S$\ is a linear mapping.
}
\item The inverse mapping $I:x\to \frac{1}{x}$, where $x\not = 0$.
\Ans{
This is not a linear mapping. Counterexample: Let $x_1=2, x_2=3$.
\begin{align*}
I(x_1)&=\frac{1}{x_1}=\frac{1}{2}\\
I(x_2)&=\frac{1}{x_2}=\frac{1}{3}\\
I(x_1)+I(x_2)&=\frac{1}{2}+\frac{1}{3} = \frac{5}{6}\\
I(x_1+x_2)&=\frac{1}{x_1+x_2}=\frac{1}{2+3}=\frac{1}{5} \not = \frac{5}{6}
\end{align*}
Thus the mapping $I$\ does not retain vector addition and is not a linear mapping.
}
\item The log mapping $L:x\to\log x$, where $x>0$.
\Ans{
This is not a linear mapping. Counterexample: Let $x_1=1, x_2=1$.
\begin{align*}
L(x_1) &= \log 1 = 0 \\
L(x_2) &= \log 1 = 0 \\
L(x_1) + L(x_2) &= 0 + 0 = 0 \\
L(x_1+x_2) &= L(2) = \log 2 \not = 0
\end{align*}
Thus the mapping $L$\ does not retain vector addition and is not a linear mapping.
}
\newpage
\item Matrix multiplication: $M:x\to Mx$, where $M$\ is a specific matrix and $x$\ has the right dimension to be multiplied by $M$.
\Ans{
Let $\Vn{x}_1,\Vn{x}_2\in \mathbb{F}^n$\ for some $n\in\mathbb{N}$\ (an arbitrary vector field),
and let $m_i$\ be the $i$th row of $M$\ for $i\in\{1\cdots n\}$.
\begin{align*}
M\Vn{x}_1 &= \begin{Mat}{1} m_1\cdot \Vn{x}_1\\ m_2\cdot\Vn{x}_1 \\ \vdots \\ m_n\cdot\Vn{x}_1 \end{Mat}, ~~~
M\Vn{x}_2 = \begin{Mat}{1} m_1\cdot \Vn{x}_2\\ m_2\cdot\Vn{x}_2 \\ \vdots \\ m_n\cdot\Vn{x}_2 \end{Mat} \\
M\Vn{x}_1 + M\Vn{x}_2 &= \begin{Mat}{1} m_1\cdot \Vn{x}_1 + m_1\cdot \Vn{x}_2 \\
m_2\cdot\Vn{x}_1 + m_2\cdot\Vn{x}_2 \\
\vdots \\
m_n\cdot\Vn{x}_1 + m_n\cdot\Vn{x}_2\end{Mat}
= \begin{Mat}{1} m_1\cdot(\Vn{x}_1 + \Vn{x}_2) \\
m_2\cdot(\Vn{x}_1 + \Vn{x}_2) \\
\vdots \\
m_n\cdot(\Vn{x}_1 + \Vn{x}_2) \end{Mat} \\
&= M(\Vn{x}_1+\Vn{x}_2)
\shortintertext{Thus the additive property is retained. Now let $c\in\mathbb{R}$.}
M(c\Vn{X}_1) &= \begin{Mat}{1} m_1\cdot(c\Vn{x}_1) \\ m_2\cdot(c\Vn{x}_1) \\ \vdots \\ m_n\cdot(c\Vn{x}_1) \end{Mat}
= \begin{Mat}{1} c(m_1\cdot\Vn{x}_1) \\ c(m_2\cdot\Vn{x}_1) \\ \vdots \\ c(m_n\cdot(\Vn{x}_1) \end{Mat} \\
&= c\begin{Mat}{1} m_1\cdot\Vn{x}_1 \\ m_2\cdot\Vn{x}_1 \\ \vdots \\ m_n\cdot\Vn{x}_1 \end{Mat}
= cM\Vn{x}_1
\end{align*}
Thus the scalar multiplication property is retained, and M is a linear operator.
}
\end{enumerate}
~\\
\item
A permutation of $n$\ objects is a rearrangement of the $n$\ objects. A permutation matrix is a matrix whose entries are either $0$\ or $1$, with the added restriction that each column and each row consists of a single $1$, with the other entries being $0$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Let $P$\ be a $n\times m$\ matrix. What restrictions, if any, must we impose on $n,m$\ if we want $P$\ to be a permutation matrix?
Prove your answer.
}
\Ans{
Let $\Vn{v} \in \mathbb{R}^n$\ be an ordered list of objects to be permuted. By the definition of matrix multiplication, $P\Vn{v} \in \mathbb{R}^m$. By the definition of permutation, The original and permuted list are to be reorderings of each other, with the same number of elements. Thus it must be the case that $m=n$, and the matrix must be square.
}
\item \Que{
Let $P$\ be a permutation matrix and $\Vn{x}$\ a vector of the appropriate size. Explain why $P\Vn{x}$\ is a permutation (rearrangement) of the components of $\Vn{x}$.
}
\Ans{
Let $\Vn{x}^\prime=P\Vn{x}$, let $P_j$\ for some $j\in \{1\cdots n\}$\ be a row of $P$, let $k\in\{1\cdots n\}$\ be the row number of the non-zero element of $P_j$, and let $x_k$\ be the $k$th element of $\Vn{x}$. By the definition of matrix multiplication, the $j$th element of $\Vn{x}^\prime$\ will equal $x_k$\ since $P_{jk}=1$\ and all other elements of $P_j=0$. Since each column of $P$ contains only one non-zero entry, we are guaranteed that $x_k$\ will not be represented in any other entry of $\Vn{x}^\prime$.
}
\newpage
\item \Que{
Explain why $P^k=I$\ for some $k$.
}
\Ans{
The permutation operation applied successively to a vector forms a cyclical chain of permutations that eventually produce the original vector. Since the specific permutation is fixed, there can be no more than $n$\ unique permutations produced from an original vector of size $n$. Thus for some $k\leq n$ such that $k$\ is the number of unique permutations in the cycle, $P^k=I$\
}
\item \Que{
Find a permutation matrix for the sestina. That is, find $P$\ so that
\begin{align*}
P\begin{Mat}{1} A\\B\\C\\D\\E\\F \end{Mat} &= \begin{Mat}{1} F\\A\\E\\B\\D\\C \end{Mat}
\end{align*}
}
\Ans{
\begin{align*}
P = \begin{Mat}{6} 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \end{Mat}
\end{align*}
}
\item \Que{
The sestina has six stanzas. You have just found the first two stanzas. The remaining stanzas are found by applying $P$\ repeatedly. Find the rhythm scheme for the remaining stanzas. Can you see why a sestina has six and not five or seven stanzas?
}
\Ans{
\begin{align*}
\Vn{s} &= \begin{Mat}{6} A & B & C & D & E & F \end{Mat}^T \\
P\Vn{s} &= \begin{Mat}{6} F & A & E & B & D & C \end{Mat}^T \\
P^2\Vn{s} &= \begin{Mat}{6} C & F & D & A & B & E \end{Mat}^T \\
P^3\Vn{s} &= \begin{Mat}{6} E & C & B & F & A & D \end{Mat}^T \\
P^4\Vn{s} &= \begin{Mat}{6} D & E & A & C & F & B \end{Mat}^T \\
P^5\Vn{s} &= \begin{Mat}{6} B & D & F & E & C & A \end{Mat}^T \\
P^6\Vn{s} &= \begin{Mat}{6} A & B & C & D & E & F \end{Mat}^T = \Vn{s}
\end{align*}
Thus we see that $P^6=I$\ and the cycle has six stanzas so that it can be repeated ad infinitum with no feeling of discontinuity for the audience.
}
\newpage
\item \Que{
Suppose you want to invent a new poetic form similar to a sestina, based on five terminal words $A,B,C,D,E$. If possible, construct a permutation matrix that will give this form two stanzas of five lines.
}
\Ans{
We want to find $P$ such that
\begin{align*}
P^2 &= I \\
P &= P^{-1}
\shortintertext{My intuition is that this will be true if $P=P^T$}
P &= \begin{Mat}{5} 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \end{Mat}
\shortintertext{Verify:}
\Vn{s} &= \begin{Mat}{5} A & B & C & D & E \end{Mat}^T \\
P\Vn{s} &= \begin{Mat}{5} C & E & A & D & B \end{Mat}^T \\
P^2\Vn{s} &= \begin{Mat}{5} A & B & C & D & E \end{Mat}^T
= \Vn{s}
\end{align*}
Observation: Since there are an odd number of words and an even number of stanzas, one word will always remain in its original place in the rhythm since it has no word left to swap with.
}
\item \Que{
Suppose you decide two stanzas isn't interesting enough. If possible, construct a permutation matrix that will give this form six stanzas of five lines.
}
\Ans{
To find the original Sestina transformation for $n=6$(words) and $k=6$(stanzas), we generated unique orderings $p_k$\ of $\{1,\cdots,n\}$\ with no duplicates:
\begin{align*}
p_1 &= (2,4,5,3,6,1)
\shortintertext{that represents the positions that the 1st element takes after $n$\ transforms, ending in 1 to represent completion of the cycle. by "popping" elements from the front and "pushing" them to the rear, we can generate the remaining orderings:}
p_2 &= (4,5,3,6,1,2)\\
p_4 &= (5,3,6,1,2,4)\\
p_5 &= (3,6,1,2,4,5)\\
p_3 &= (6,1,2,4,5,3)\\
p_6 &= (1,2,4,5,3,6)
\end{align*}
Note that with $n=6$\ elements there are $k=6$\ such orderings. With $n=5$\ elements there can only be $k\leq n = 5$\ such orderings, since each ordering must have a unique final element. Thus it is not possible to construct a six stanza form, but it would be possible to construct five:
\begin{align*}
p_1 &= (2,4,5,3,1) \\
p_2 &= (4,5,3,1,2) \\
p_4 &= (5,3,1,2,4) \\
p_5 &= (3,1,2,4,5) \\
p_3 &= (1,2,4,5,3)
\shortintertext{which results in the permutation matrix}
P &= \begin{Mat}{5} 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \end{Mat}
\shortintertext{verify:}
\Vn{s} &= \begin{Mat}{5} A & B & C & D & E \end{Mat}^T \\
P\Vn{s} &= \begin{Mat}{5} C & A & E & B & D \end{Mat}^T \\
P^2\Vn{s} &= \begin{Mat}{5} E & C & D & A & B \end{Mat}^T \\
P^3\Vn{s} &= \begin{Mat}{5} D & E & B & C & A \end{Mat}^T \\
P^4\Vn{s} &= \begin{Mat}{5} B & D & A & E & C \end{Mat}^T \\
P^5\Vn{s} &= \begin{Mat}{5} A & B & C & D & E \end{Mat}^T = \Vn{s}
\end{align*}
}
\end{enumerate}
~\\
\item
Remember we were able to express rotations and reflections, which are geometric transformations, using a linear transformation $T$, the coefficient matrix corresponding to the transformation $(x,y)\to(x',y')$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
What problem do you encounter with translation $(x,y)\to (x+h,y+k)$?
}
\Ans{
This fails to retain addition. Let $\Vn{x}=\Ve{x_1,x_2}\in \mathbb{R}^2$, Define $T:\mathbb{R}^2\to\mathbb{R}^2$\ by $T(\Ve{x_1,x_2})=\Ve{x_1+h,x_2+k}$.
\begin{align*}
T(\Vn{x}) &= \Ve{x_1+h,x_2+k}\\
T(\Vn{y}) &= \Ve{y_1+h,y_2+k}\\
T(\Vn{x}) + T(\Vn{y}) &= \Ve{x_1+h,x_2+k} + \Ve{y_1+h,y_2+k} = \Ve{x_1+y_1+2h,x_2+y_2+2k}\\
T(\Vn{x}+\Vn{y}) &= T(\Ve{x_1+y_1,x_2+y_2}) = \Ve{(x_1+y_1)+h,(x_2+y_2)+k} \\
T(\Vn{x}+\Vn{y}) &\not = T(\Vn{x}) + T(\Vn{y})
\end{align*}
}
To handle this problem, we introduce homogeneous coordinates. We let the vector $(x_1,y_1)\in\mathbb{R}^2$\ correspond to the vector $(x,y,1)$, and conversely. (In effect, we're projecting the $xy$-plane onto the plane $z=1$)
\item \Que {
Find $M$, the matrix corresponding to the translation $(x,y,1)\to(x+h,y+k,1)$.
}
\Ans{
\begin{align*}
M &= \begin{Mat}{3} 1 & 0 & h \\
0 & 1 & k \\
0 & 0 & 1 \end{Mat}
\shortintertext{Verify:}
M\Vn{x} &= \begin{Mat}{3} 1 & 0 & h \\
0 & 1 & k \\
0 & 0 & 1 \end{Mat}
\begin{Mat}{1} x \\ y \\ 1 \end{Mat}
=
\begin{Mat}{1} x+h \\ y+k \\ 1 \end{Mat}
\end{align*}
}
\newpage
\item \Que {
Let $T=\begin{Mat}{3} a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1 \end{Mat}$. Consider the square with opposite vertices at $(0,0)$\ and $(1,1)$. Find where each of the four vertices of the square ends up when the linear transformation $M$\ is applied to each of them.
}
\Ans{
Let $v_1=(0,0)\to \Ve{0,0,1}, v_2=(1,0)\to\Ve{1,0,1}, v_3=(0,1)\to\Ve{0,1,1}, v_4=(1,1)\to\Ve{1,1,1}$.
\begin{align*}
Tv_1 &= \begin{Mat}{3} a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1 \end{Mat}
\begin{Cmat}{1} 0 \\ 0 \\ 1 \end{Cmat}
= \begin{Cmat}{1} 0a_{11} + 0a_{12} + 1a_{13} \\
0a_{21} + 0a_{22} + 1a_{23} \\
0 + 0 + 1 \end{Cmat}
= \begin{Cmat}{1} a_{13} \\ a_{23} \\ 1 \end{Cmat} \\
Tv_2 &= \begin{Mat}{3} a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1 \end{Mat}
\begin{Cmat}{1} 1 \\ 0 \\ 1 \end{Cmat}
= \begin{Cmat}{1} 1a_{11} + 0a_{12} + 1a_{13} \\
1a_{21} + 0a_{22} + 1a_{23} \\
0 + 0 + 1 \end{Cmat}
= \begin{Cmat}{1} a_{11}+a_{13} \\ a_{21}+a_{23} \\ 1 \end{Cmat}\\
Tv_3 &= \begin{Mat}{3} a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1 \end{Mat}
\begin{Cmat}{1} 0 \\ 1 \\ 1 \end{Cmat}
= \begin{Cmat}{1} 0a_{11} + 1a_{12} + 1a_{13} \\
0a_{21} + 1a_{22} + 1a_{23} \\
0 + 0 + 1 \end{Cmat}
= \begin{Cmat}{1} a_{12}+a_{13} \\ a_{22}+a_{23} \\ 1 \end{Cmat}\\
Tv_4 &= \begin{Mat}{3} a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1 \end{Mat}
\begin{Cmat}{1} 1 \\ 1 \\ 1 \end{Cmat}
= \begin{Cmat}{1} 1a_{11} + 1a_{12} + 1a_{13} \\
1a_{21} + 1a_{22} + 1a_{23} \\
0 + 0 + 1 \end{Cmat}
= \begin{Cmat}{1} a_{11}+a_{12}+a_{13} \\ a_{21}+a_{22}+a_{23} \\ 1 \end{Cmat}
\end{align*}
}
\item \Que {
Find the area of the resulting quadrilateral.
}
\Ans{
Let $\Vn{w}=\Line{v_1v_2}=v_2-v_1=\Ve{a_{11},a_{21},0}$, and $\Vn{x}=\Line{v_1v_3}=v_3-v_1=\Ve{a_{12},a_{22},0}$. Since we are dealing with vectors in $\mathbb{R}^3$\ the cross product is defined, and the area of the quadrilateral formed coincides with the magnitude of the cross product $\Vn{w}\times\Vn{x}$:
\begin{align*}
A &= \norm{\Vn{w}\times\Vn{x}} = \norm{\begin{Mat}{1} a_{11} \\ a_{21} \\ 0 \end{Mat} \times
\begin{Mat}{1} a_{12} \\ a_{22} \\ 0 \end{Mat}}
= \begin{vmatrix} i & j & k \\ a_{11} & a_{21} & 0 \\ a_{12} & a_{21} & 0 \end{vmatrix} \\
&= \norm{0i-0j+(a_{11}a_{22}-a_{12}a_{21})k}
= \sqrt{0^2+0^2+(a_{11}a_{22}-a_{12}a_{21})^2}\\
&= \underline{a_{11}a_{22}-a_{12}a_{21}}
\end{align*}
}
\item \Que{
Suppose that when $T$\ is applied to a unit square, the transformed square has area $0$. Does $T=0$\ (the $3\times 3$\ matrix of all zeros)? Prove, or give a counterexample.
}
\Ans{
Not necessarily. counterexample:
\begin{align*}
T &= \begin{Mat}{3} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{Mat} \\
Tv_1 &= Tv_2 = Tv_3 = \begin{Mat}{1} 1 \\ 1 \\ 1 \end{Mat}
% Tv_1 &= T\begin{Mat}{1} 0 \\ 0 \\ 1 \end{Mat} = \begin{Mat}{1} 1 \\ 1 \\ 1 \end{Mat} \\
% Tv_2 &= T\begin{Mat}{1} 1 \\ 0 \\ 1 \end{Mat} = \begin{Mat}{1} 1 \\ 1 \\ 1 \end{Mat} \\
% Tv_3 &= T\begin{Mat}{1} 0 \\ 1 \\ 1 \end{Mat} = \begin{Mat}{1} 1 \\ 1 \\ 1 \end{Mat} \\
% Tv_3 &= T\begin{Mat}{1} 1 \\ 1 \\ 1 \end{Mat} = \begin{Mat}{1} 1 \\ 1 \\ 1 \end{Mat}
\end{align*}
We can see that the area of the transformed rectangle is $(1-1)\times(1-1) = 0$.
}
\end{enumerate}
%~\\
\newpage
\item
Given a matrix $M$, an eigenvalue-eigenvector pair is a number $\lambda$\ and vector $\Vn{v}$\ where $M\Vn{v}=\lambda\Vn{v}$. $\Vn{v}$\ must be a non-zero vector; however $\lambda$\ could be zero. In the following, assume $M$\ is a $2\times 2$\ matrix with distinct real eigenvalues $\lambda_1, \lambda_2$\ and corresponding eigenvectors $\Vn{v}_1, \Vn{v}_2$. Assume $0<\norm{\lambda_1}<1<\lambda_2$, and that $\Vn{v}_1,\Vn{v}_2$\ span $\mathbb{R}^2$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Since $\lambda_1,\Vn{v}_1$\ is an eigenvalue-eigenvector pair, we have $M\Vn{v}_1=\lambda_1\Vn{v}_1$. Describe what this means geometrically.
}
\Ans{
If there exists such a pair, it means that applying the linear transformation corresponding to matrix $M$\ to the eigenvector $\Vn{v}_1$\ results in a vector $\Vn{v}_1^\prime$\ that is the same direction as $\Vn{v}_1$, scaled by $\lambda\in\mathbb{R}$.
}
\item \Que{
Prove or disprove: $c\Vn{v}_1$\ is an eigenvector for any real number $c$.
}
\Ans{
Since we know $\Vn{v}_1$\ is an eigenvector, we know that $M\Vn{v}_1=\lambda_1\Vn{v}_1$. Since scalar multiplication is distributive, it follows that $M(c\Vn{v}_1) = cM\Vn{v}_1 = (cM)\Vn{v}_1 = (c\lambda_1)\Vn{v}_1$\ which is an eigenvalue-eigenvector pair for the matrix $cM$.
}
\item \Que{
Evaluate: $M^n\Vn{v}_1$\ and $M^n\Vn{v}_2$.
}
\Ans{
\begin{minipage}[m]{0.4\textwidth}
\begin{align*}
M^n\Vn{v}_1 &= \lambda_1 M^{n-1}\Vn{v}_1 \\
&= \lambda_1^2 M^{n-2}\Vn{v}_1 \\
&= ~~~\vdots \\
&= \lambda_1^n\Vn{v}_1
\end{align*}
\end{minipage}
\begin{minipage}[m]{0.4\textwidth}
\begin{align*}
M^n\Vn{v}_2 &= \lambda_1 M^{n-1}\Vn{v}_2 \\
&= \lambda_1^2 M^{n-2}\Vn{v}_2 \\
&= ~~~\vdots \\
&= \lambda_1^n\Vn{v}_2
\end{align*}
\end{minipage}
}
\item \Que{
Let $\Vn{x}$\ be any vector in $\mathbb{R}^2$. Evaluate: $M^n\Vn{x}$.
}
\Ans{
Since eigenvectors $\Vn{v}_1,\Vn{v}_2$\ span $\mathbb{R}^2$, let $\Vn{x}=x_1\Vn{v}_1+x_2\Vn{v}_2$\ for some $x_1,x_2\in\mathbb{R}$.
\begin{align*}
M\Vn{x} &= M(x_1\Vn{v}_1+x_2\Vn{v}_2) \\
&= x_1M\Vn{v}_1 + x_2M\Vn{v}_2 \\
&= x_1\lambda_1\Vn{v}_1 + x_2\lambda_2\Vn{v}_2 \\
M^2\Vn{x} &= M(x_1\lambda_1\Vn{v}_1 + x_2\lambda_2\Vn{v}_2) \\
&= x_1\lambda_1^2\Vn{v}_1 + x_2\lambda_2^2\Vn{v}_2 \\
& ~~ \vdots \\
M^n\Vn{x} &= x_1\lambda_1^n\Vn{v}_1 + x_2\lambda_2^n\Vn{v}_2
\end{align*}
}
\item \Que{
One way to find the largest eigenvalue ($\lambda_2$\ in this case) and its corresponding eigenvector is the following: Pick any non-zero vector $\Vn{x}$, and find $M^{n+1}\Vn{x}$\ and $M^n\Vn{x}$\ for a sufficiently large value of $n$.
Explain why $\lambda_2\approx \frac{\norm{M^{n+1}\Vn{x}}}{\norm{M^n\Vn{x}}}$.
}
\Ans{
Since a linear transformation will produce a uniform scaling across all eigenvectors transformed, and any arbitrary vector can be written as a linear combination of the eigenvectors, and the non-dominant eigenvalues are relatively small ($\norm{\lambda_1}\leq 1$\ in this case):
\begin{align*}
\Vn{x} &= x_1\Vn{v_1}+x_2\Vn{v_2} \\
M\Vn{x} &= M(x_1\Vn{v_1}+x_2\Vn{v_2}) = x_1 M \Vn{v}_1 + x_2 M \Vn{v}_2 = x_1\lambda_1\Vn{v}_1+x_2\lambda_2\Vn{v}_2\\
M^n\Vn{x} &= x_1\lambda_1^n\Vn{v}_1 + x_2\lambda_2^n\Vn{v}_2 \approx x_2\lambda_2^n\Vn{v}_2
\shortintertext{since $\lambda_1^n\to 0$\ for sufficiently large $n$. Thus}
\frac{M^{n+1}\Vn{x}}{M^n\Vn{x}} &\approx \frac{x_2\lambda_2 \lambda_2^n\Vn{v}_2}{x_2\lambda_2^n\Vn{v}_2}\\
&\approx \lambda_2
\end{align*}
}
\newpage
\item \Que{
Let $M=\begin{Mat}{2} 2 & 1 \\ 0 & 1 \end{Mat}$. Find $M^8, M^9$, and an approximation for $\lambda_2$\ and a corresponding eigenvector $\Vn{v}_2$.
}
\Ans{
Let $\Vn{x}=\Ve{1,0}$.
\begin{align*}
M^1 &= \begin{Mat}{2} 2 & 1 \\ 0 & 1 \end{Mat}, ~~~
M^2 = \begin{Mat}{2} 4 & 3 \\ 0 & 1 \end{Mat}, ~~~
M^3 = \begin{Mat}{2} 8 & 7 \\ 0 & 1 \end{Mat}\\
& ~~~~~~\vdots \\
M^n &= \begin{Mat}{2} 2^n & 2^n-1 \\ 0 & 1 \end{Mat} \\
M^8 &= \begin{Mat}{2} 256 & 255 \\ 0 & 1 \end{Mat} \\
M^9 &= \begin{Mat}{2} 512 & 511 \\ 0 & 1 \end{Mat} \\
M^8\Vn{x} &= \Ve{256\cdot 1 + 255\cdot 0, 0\cdot 1 + 1\cdot 0}
= \Ve{256,0} \\
M^9\Vn{x} &= \Ve{512\cdot 1+ 511\cdot 0, 0\cdot 1 + 1\cdot 0}
= \Ve{512,0}\\
\norm{M^8\Vn{x}} &= \sqrt{256^2+0^2} = 256\\
\norm{M^9\Vn{x}} &= \sqrt{512^2+0^2} = 512\\
\frac{\norm{M^9\Vn{x}}}{\norm{M^8\Vn{x}}}&=\frac{512}{256}= 2
\end{align*}
Thus $\lambda_2\approx 2$. Solving $M\Vn{v}_2=\lambda_2\Vn{v}_2$\ for $\Vn{y}=\Vn{v}_2$:
\begin{align*}
M\Vn{y} &= \lambda_2\Vn{y} = 2\Vn{y}\\
\begin{Mat}{1} 2y_1 + y_2 \\ y_2 \end{Mat} &= \begin{Mat}{1} 2y_1 \\ 2y_2 \end{Mat} \\
2y_1 + y_2 &= 2y_1 \\
y_2 &= 0\\
y_1 &= anything \cdots
\end{align*}
Thus we see an eigenvector $\Vn{v}_2 = \Vn{y} = \Ve{1,0}$ corresponds to $\lambda_2=2$.
}
\end{enumerate}
%~\\
\newpage
\item Answer the following questions.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Solve the following system, parameterizing as necessary.
\begin{align*}
3x+2y-4z+w &= 0 \\
x-4y+z+2w &= 0 \\
x+10y-6z-3w&= 0 \\
2x+y-4z-5w &= 0
\end{align*}
}
\Ans{
First, put the corresponding coefficient matrix into row echelon form:
\begin{align*}
&~~~~~~R_1-R_4\to R_1\\
&~~~~~~R_2-R_3\to R_2\\
&~~~~~~R_3-R_2\to R_3~~~~~~~~~~~~~~~~~~5R_3+14R_4\to R_3\\
&~~~~~~R_4-(R_2+R_3)\to R_4~~~~~~~~(R_2+R_3)/3\to R_4\\
\begin{Mat}{4} 3 & 2 & -4 & 1 \\
1 & -4 & 1 & 2 \\
1 & 10 & -6 & -3 \\
2 & 1 & -4 & -5 \end{Mat}
&\to
\begin{Mat}{4} 1 & 1 & 0 & 6 \\
0 & -14 & 7 & 5 \\
0 & 14 & -7 & -5 \\
0 & -5 & 1 & -4 \end{Mat}
\to
\begin{Mat}{4} 1 & 1 & 0 & 6 \\
0 & -14 & 7 & 5 \\
0 & 0 & -7 &-27 \\
0 & 0 & 0 & 0 \end{Mat}
\shortintertext{To parameterize, let $7s=w$.}
-7z-189s &= 0 \\
z &= -27s \\
-14y + 7z +5 w &= 0 \\
-14y &= -7(-27s)+5(7s) \\
y &= -\frac{27}{2}s - \frac{5}{2}s = -16s \\
x + y + 6w &= 0 \\
x &= -(-16s) -6(7s) = (16-42)s = -26s
\end{align*}
Thus the solution is the line $S=\{s\Ve{-26,-16,-27,7} : s\in\mathbb{R}\}$.
}
\newpage
\item \Que{
Let $\mathbb{A}$\ be the set of polynomials of the form $ax^2+bx+c$, where $a,b,c\in\mathbb{R}$, where we define addition and scalar multiplication using the standard rules of polynomial arithmatic. Prove or disprove: $\mathbb{A}$\ is a vector space.
}
\Ans{
Let $A_1,A_2,A_3 \in \mathbb{A}$\ such that $A_1=a_1x^2+b_1x+c_1, A_2=a_2x^2+b_2x+c_2, A_3=a_3x^2+b_3x+c_3$, and let $z,w \in \mathbb{R}$.
\begin{align*}
\shortintertext{the set is closed under addition:}
A_1 + A_2 &= (a_1x^2+b_1x+c_1)+(a_2x^2+b_2x+c_2) = (a_1+a_2)x^2 + (b_1+b_2)x+(c_1+c_2) \in \mathbb{A}
\shortintertext{the set is closed under scalar multiplication:}
zA_1 &= z(a_1x^2+b_1x+c_1) = (za_1)x^2+(zb_1)x+(zc_1) \in \mathbb{A}
\shortintertext{the set of commutative:}
A_1+A_2 &= (a_1x^2+b_1x+c_1)+(a_2x^2+b_2x+c_2) = (a_1+a_2)x^2 + (b_1+b_2)x+(c_1+c_2) \\
&= (a_2+a_1)x^2 + (b_2+b_1)x + (c_2+c_1) = (a_2x^2+b_2x+c_2)+(a_1x^2+b_1x+c_1) \\
&= A_2+A_1
\shortintertext{the set is associative:}
(A_1+A_2)+A_3 &= ((a_1+a_2)x^2 + (b_1+b_2)x+(c_1+c_2)) + (a_3x^2+b_3x+c_3) \\
&= (a_1+a_2+a_3)x^2 + (b_1+b_2+b_3)x + (c_1+c_2+c_3) \\
&= (a_1x^2+b_1x+c_1)+((a_2+a_3)x^2+(b_2+b_3)x+(c_2+c_3)) \\
&= A_1 + (A_2+A_3)
\shortintertext{the set contains a zero vector such that $A_1+\Vn{0}=A_1$:}
\Vn{0} &= \Ve{0,0,0} = 0x^2+0x+0 = 0 \\
A_1+\Vn{0} &= (a_1+0)x^2 + (b_1+0)x + (c_1+0) = a_1x^2 + b_1x+c_1 = A_1
\shortintertext{the set contains additive inverses for all members:}
A_1^\prime &= (-1)A_1 = -a_1x^2-b_1x-c_1\\
A_1 + A_1^\prime &= (a_1-a_1)x^2+(b_1-b_1)x+(c_1-c_1) = 0x^2+0x+0 = \Vn{0} = 0 \\
\shortintertext{multiplication by 1 is idempotent:}
1A_1 &= 1(a_1x^2+b_1x+c_1) = a_1x^2+b_1x+c_1 = A_1
\shortintertext{the set is associative of scalar multiplication:}
z(wA_1) &= z(wa_1x^2+wb_1x+wc_1) = (zw)a_1x^2+(zw)b_1x+(zw)c_1 = (zw)(a_1x^2+b_1x+c_1)\\
&= (zw)(A_1)
\shortintertext{the set is distributive of scalar over vector:}
z(A_1+A_2) &= z((a_1+a_2)x^2 + (b_1+b_2)x+(c_1+c_2)) = z(a_1+a_2)x^2+z(b_1+b_2)x+z(c_1+c_2)\\
&= za_1x^2+za_2x^2+zb_1x+zb_2x+zc_1+zc_2 \\
&= z(a_1x^2+b_1x+c_1)+z(a_2x^2+b_2x+c_2) \\
&= zA_1+zA_2
\shortintertext{the set is distributive of vector over scalar:}
(z+w)A_1 &= (z+w)(a_1x^2+b_1x+c_1) = (z+w)a_1x^2 + (z+w)b_1x + (z+w)c_1 \\
&= za_1x^2+wa_1x^2+zb_1x+wb_1x+zc_1+wc_1 \\
&= z(a_1x^2+b_1x+c_1)+w(a_1x^2+b_1x+c_1)\\
&= zA_1 + wA_1
\shortintertext{thus the set is a vector space.}
\end{align*}
}
\end{enumerate}
\end{enumerate}
\end{document}