forked from bcaitech1/p3-mrc-jobplz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_qa.py
executable file
·114 lines (96 loc) · 4.48 KB
/
trainer_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
from transformers import Trainer, is_datasets_available, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
if is_datasets_available():
import datasets
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class QuestionAnsweringTrainer(Trainer):
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None):
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_dataloader = self.get_eval_dataloader(eval_dataset)
eval_examples = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
try:
output = self.prediction_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
# We might have removed columns from the dataset so we put them back.
if isinstance(eval_dataset, datasets.Dataset):
eval_dataset.set_format(
type=eval_dataset.format["type"],
columns=list(eval_dataset.features.keys()),
)
if self.post_process_function is not None and self.compute_metrics is not None:
eval_preds = self.post_process_function(
eval_examples, eval_dataset, output.predictions, self.args
)
metrics = self.compute_metrics(eval_preds)
self.log(metrics)
else:
metrics = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
self.control = self.callback_handler.on_evaluate(
self.args, self.state, self.control, metrics
)
return metrics
def predict(self, test_dataset, test_examples, ignore_keys=None):
test_dataloader = self.get_test_dataloader(test_dataset)
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
try:
output = self.prediction_loop(
test_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
# We might have removed columns from the dataset so we put them back.
if isinstance(test_dataset, datasets.Dataset):
test_dataset.set_format(
type=test_dataset.format["type"],
columns=list(test_dataset.features.keys()),
)
predictions = self.post_process_function(
test_examples, test_dataset, output.predictions, self.args
)
return predictions