wozaimoyu
/
IRS_Enhanced-Wireless-Network_Joint-Active-and-Passive-BeamformingDesign_Qingqing-Wu-and-Rui-Zhang
Public
forked from jhan-04/IRS_Enhanced-Wireless-Network_Joint-Active-and-Passive-BeamformingDesign_Qingqing-Wu-and-Rui-Zhang
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIRS_MISO_fig5.m
161 lines (111 loc) · 2.4 KB
/
IRS_MISO_fig5.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
%centralized algorithm
%fig5
%d=15,43,50일때 N(the number of refelcting element)가 증가하면 어떻게 SNR이 바뀌는지
clc
clear all
P=10^(5/10)/1000;%5dBm
P_noise=10^(-80/10)/1000;%-80dBm
M=8;N=50;
d0=51;
dv=2;
D=0;
nn=30:10:100;
for a=1:1:8
N=nn(a);
% Hr_H=(randn(1,N)+1i*randn(1,N))/sqrt(2);%Rayleigh
% Hd_H=(randn(1,M)+1i*randn(1,M))/sqrt(2);%Rayleigh
for i=1:N
Hr_H(1,i)=1/sqrt(2)+1i/sqrt(2);
end
for i=1:M
Hd_H(1,i)=1/sqrt(2)+1i/sqrt(2);
end
kdb=50;
k=10^(kdb/10);
g=sqrt(k/(k+1))+sqrt(1/(k+1)).*(randn(1,M)+1i*randn(1,M))/sqrt(2);%Rician
for j=1:N
%20*log10(51) + 20*log10(28*10^6)-147.55=35.5446dB
g2=g.*sqrt(10^(-3).*10^(5/10).*10^(-35.5446/10));
%g2=g.*sqrt(10^(-3).*10^(5/10)./(4*pi/10^(5/10)*d0^2));
G(j,:)=g2;
end
d1=[15,43,50];
for b=1:3
d=d1(b);
%for d=15:5:50
%d=50;
d_hr=sqrt((d0-d)^2+dv^2);%d2
d_hd=sqrt(d^2+dv^2);%d1
hr_H=Hr_H.*sqrt(10^(-3).*10^(-10/10).*d_hr^-3.*10^(5/10));
hr=hr_H';
hd_H=Hd_H.*sqrt(10^(-3).*10^(-10/10).*d_hd^-3);
hd=hd_H';
% hr_H=Hr_H.*10^(-1.5).*10^(-5/10).*d_hr^-1.5.*10^(2.5/10);
% hr=hr_H';
% hd_H=Hd_H.*10^(-1.5).*10^(-5/10).*d_hd^-1.5;
% hd=hd_H';
Phi=diag(hr_H)*G;
R_=[Phi*Phi' Phi*hd;hd_H*Phi' 0];
R=round(R_,15);
ishermitian(R)
%%%%%%%%%%%%
cvx_begin
variable V(N+1,N+1) symmetric
maximize(trace(R*V))
subject to
for n=1:N+1
V(n,n)==1;
end
V == semidefinite(N+1);
cvx_end
% cvx_begin
% variable V(N+1,N+1) symmetric
% maximize(trace(R*V));
% subject to
% diag(V)==1;
% V == semidefinite(N+1);
% cvx_end
%%%%%%%%%%%%
[U,W,Z] = svds(V);%V=U*W*Z'
obj_max=-100;
n=length(W);
for j=1:1000
r=sqrt(1/2)*(randn(n,1)+1i*randn(n,1));%sqrt(var/2)*(randn(1,N)+1i*randn(1,N))
v_=U*sqrt(W)*r;
obj=(v_'*R*v_);
if obj>=obj_max
obj_max=obj;
v_max=v_;
end
end
t=v_max(N+1);
for j=1:N
v(j,:)=exp(1i*angle(v_max(j)/t));
%v(j,:)=v_max(j)/t;
end
% for i=n+1:N
%
% v(i,:)=0;
%
% end
w=sqrt(P).*(v'*Phi+hd_H)'./norm(v'*Phi+hd_H);
obj_final=P*(norm(v'*Phi+hd_H))^2;
obj_final2=(abs((v'*Phi+hd_H)*w))^2;
SNR=10*log10(obj_final/P_noise);%dB
% D=D+1;
% SNR_re(D)=SNR;
SNR_re(a,b)=SNR
end
%plot([15:5:50],SNR_re)%d~SNR
%plot([30:10:100],SNR_re())%N~SNR
end
hold on
plot([30:10:100],SNR_re(:,1))
plot([30:10:100],SNR_re(:,2))
plot([30:10:100],SNR_re(:,3))
grid on
xlabel('Number of reflecting elements,N');
ylabel('Receive SNR (dB)');
title('Fig. 5 in the Paper');
legend('d=15','d=43','d=50');
hold off