As hard to manage duplicated repos, I've deprecated this project.
Instead, utililze below libraries instead.
OpenAI function call schema definition, converter and executor.
@wrtnio/openai-function-schema
supports OpenAI function call schema definitions, and converter from Swagger (OpenAPI) documents. About the converter from Swagger (OpenAPI) documents, @wrtnio/openai-function-schema
supports every versions of them.
- Swagger v2.0
- OpenAPI v3.0
- OpenApi v3.1
Also, @wrtnio/openai-function-schema
provides function call executor from IOpenAiDocument
and IOpenAiFunction
, so that you can easily execute the remote Restful API operation with OpenAI composed arguments.
Let's learn how to use it by example code of below.
npm install @wrtnio/openai-function-schema
import {
IOpenAiDocument,
IOpenAiFunction,
OpenAiComposer,
OpenAiFetcher,
} from "@wrtnio/openai-function-schema";
import fs from "fs";
import typia from "typia";
import { v4 } from "uuid";
import { IBbsArticle } from "../../../api/structures/IBbsArticle";
const main = async (): Promise<void> => {
// COMPOSE OPENAI FUNCTION CALL SCHEMAS
const swagger = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
const document: IOpenAiDocument = OpenAiComposer.document({
swagger
});
// EXECUTE OPENAI FUNCTION CALL
const func: IOpenAiFunction = document.functions.find(
(f) => f.method === "put" && f.path === "/bbs/articles",
)!;
const article: IBbsArticle = await OpenAiFetcher.execute({
document,
function: func,
connection: { host: "http://localhost:3000" },
arguments: [
// imagine that arguments are composed by OpenAI
v4(),
typia.random<IBbsArticle.ICreate>(),
],
});
typia.assert(article);
};
main().catch(console.error);
About supported features, please read description comments of each component.
I'm preparing documentation and playground website of @wrtnio/openai-function-schema
features. Until that, please read below components' description comments. Even though you have to read source code of each component, but description comments of them may satisfy you.
- Schema Definitions
IOpenAiDocument
: OpenAI function metadata collection with optionsIOpenAiFunction
: OpenAI's function metadataIOpenAiSchema
: Type schema info escaped$ref
.
- Functions
OpenAiComposer
: ComposeIOpenAiDocument
from Swagger (OpenAPI) documentOpenAiFetcher
: Function call executor withIOpenAiFunction
OpenAiDataCombiner
: Data combiner for LLM function call with human composed dataOpenAiTypeChecker
: Type checker forIOpenAiSchema
########
# LAUNCH CLI
########
# PRIOR TO NODE V20
npm install -g @wrtnio/openai-function-schema
npx wofs
# SINCE NODE V20
npx @wrtnio/openai-function-schema
########
# PROMPT
########
--------------------------------------------------------
Swagger to OpenAI Function Call Schema Converter
--------------------------------------------------------
? Swagger file path: test/swagger.json
? OpenAI Function Call Schema file path: test/plain.json
? Whether to wrap parameters into an object with keyword or not: No
Convert swagger to OpenAI function schema file by a CLI command.
If you run npx @wrtnio/openai-function-schema
(or npx wofs
after global setup), the CLI (Command Line Interface) will inquiry those arguments. After you fill all of them, the OpenAI function call schema file of IOpenAiDocument
type would be created to the target location.
If you want to specify arguments without prompting, you can fill them like below:
# PRIOR TO NODE V20
npm install -g @wrtnio/openai-function-schema
npx wofs --input swagger.json --output openai.json --keyword false
# SINCE NODE V20
npx @wrtnio/openai-function-schema
--input swagger.json
--output openai.json
--keyword false
Here is the list of IOpenAiDocument
files generated by CLI command.
Project | Swagger | Positional | Keyworded |
---|---|---|---|
BBS | swagger.json | positional.json | keyworded.json |
Clickhouse | swagger.json | positional.json | keyworded.json |
Fireblocks | swagger.json | positional.json | keyworded.json |
Iamport | swagger.json | positional.json | keyworded.json |
PetStore | swagger.json | positional.json | keyworded.json |
Shopping Mall | swagger.json | positional.json | keyworded.json |
Toss Payments | swagger.json | positional.json | keyworded.json |
Uber | swagger.json | positional.json | keyworded.json |
If you want to utilize @wrtnio/openai-function-schema
in the API level, you should start from composing IOpenAiDocument
through OpenAiComposer.document()
method.
After composing the IOpenAiDocument
data, you may provide the nested IOpenAiFunction
instances to the OpenAI, and the OpenAI may compose the arguments by its function calling feature. With the OpenAI automatically composed arguments, you can execute the function call by OpenAiFetcher.execute()
method.
Here is the example code composing and executing the IOpenAiFunction
.
- Test Function: test_fetcher_positional_bbs_article_update.ts
- Backend Server Code: BbsArticlesController.ts
import {
IOpenAiDocument,
IOpenAiFunction,
OpenAiComposer,
OpenAiFetcher,
} from "@wrtnio/openai-function-schema";
import fs from "fs";
import typia from "typia";
import { v4 } from "uuid";
import { IBbsArticle } from "../../../api/structures/IBbsArticle";
const main = async (): Promise<void> => {
// COMPOSE OPENAI FUNCTION CALL SCHEMAS
const swagger = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
const document: IOpenAiDocument = OpenAiComposer.document({
swagger
});
// EXECUTE OPENAI FUNCTION CALL
const func: IOpenAiFunction = document.functions.find(
(f) => f.method === "put" && f.path === "/bbs/articles",
)!;
const article: IBbsArticle = await OpenAiFetcher.execute({
document,
function: func,
connection: { host: "http://localhost:3000" },
arguments: [
// imagine that arguments are composed by OpenAI
v4(),
typia.random<IBbsArticle.ICreate>(),
],
});
typia.assert(article);
};
main().catch(console.error);
By the way, above example code's target operation function has multiple parameters. You know what? If you configure a function to have only one parameter by wrapping into one object type, OpenAI function calling feature constructs arguments a little bit efficiently than multiple parameters case.
Such only one object typed parameter is called keyword parameter
, and @wrtnio/openai-function-schema
supports such keyword parameterized function schemas. When composing IOpenAiDocument
by OpenAiComposer.document()
method, configures option.keyword
to be true
, then every IOpenAiFunction
instances would be keyword parameterized. Also, OpenAiFetcher
understands the keyword parameterized function specification, so that performs proper execution by automatic decomposing the arguments.
Here is the example code of keyword parameterizing.
- Test Function: test_fetcher_keyword_bbs_article_update.ts
- Backend Server Code: BbsArticlesController.ts
import {
IOpenAiDocument,
IOpenAiFunction,
OpenAiComposer,
OpenAiFetcher,
} from "@wrtnio/openai-function-schema";
import fs from "fs";
import typia from "typia";
import { v4 } from "uuid";
import { IBbsArticle } from "../../../api/structures/IBbsArticle";
const main = async (): Promise<void> => {
// COMPOSE OPENAI FUNCTION CALL SCHEMAS
const swagger = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
const document: IOpenAiDocument = OpenAiComposer.document({
swagger,
options: {
keyword: true, // keyword parameterizing
}
});
// EXECUTE OPENAI FUNCTION CALL
const func: IOpenAiFunction = document.functions.find(
(f) => f.method === "put" && f.path === "/bbs/articles",
)!;
const article: IBbsArticle = await OpenAiFetcher.execute({
document,
function: func,
connection: { host: "http://localhost:3000" },
arguments: [
// imagine that argument is composed by OpenAI
{
id: v4(),
body: typia.random<IBbsArticle.ICreate>(),
},
],
});
typia.assert(article);
};
main().catch(console.error);
At last, there can be some special API operation that some arguments must be composed by user, not by LLM (Large Language Model). For example, if an API operation requires file uploading or secret key identifier, it must be composed by user manually in the frontend application side.
For such case, @wrtnio/openai-function-schema
supports special option IOpenAiDocument.IOptions.separate
. If you configure the callback function, it would be utilized for determining whether the value must be composed by user or not. When the arguments are composed by both user and LLM sides, you can combine them into one through OpenAiDataComposer.parameters()
method, so that you can still execute the function calling with OpenAiFetcher.execute()
method.
Here is the example code of such special case:
- Test Function: test_combiner_keyword_parameters_query.ts
- Backend Server Code: MembershipController.ts
import {
IOpenAiDocument,
IOpenAiFunction,
IOpenAiSchema,
OpenAiComposer,
OpenAiDataCombiner,
OpenAiFetcher,
OpenAiTypeChecker,
} from "@wrtnio/openai-function-schema";
import fs from "fs";
import typia from "typia";
import { IMembership } from "../../api/structures/IMembership";
const main = async (): Promise<void> => {
// COMPOSE OPENAI FUNCTION CALL SCHEMAS
const swagger = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
const document: IOpenAiDocument = OpenAiComposer.document({
swagger,
options: {
keyword: true,
separate: (schema: IOpenAiSchema) =>
OpenAiTypeChecker.isString(schema) &&
(schema["x-wrtn-secret-key"] !== undefined ||
schema["contentMediaType"] !== undefined),
},
});
// EXECUTE OPENAI FUNCTION CALL
const func: IOpenAiFunction = document.functions.find(
(f) => f.method === "patch" && f.path === "/membership/change",
)!;
const membership: IMembership = await OpenAiFetcher.execute({
document,
function: func,
connection: { host: "http://localhost:3000" },
arguments: OpenAiDataCombiner.parameters({
function: func,
llm: [
// imagine that below argument is composed by OpenAI
{
body: {
name: "Wrtn Technologies",
email: "master@wrtn.io",
password: "1234",
age: 20,
gender: 1,
},
},
],
human: [
// imagine that below argument is composed by human
{
query: {
secret: "something",
},
body: {
secretKey: "something",
picture: "https://wrtn.io/logo.png",
},
},
],
}),
});
typia.assert(membership);
};
main().catch(console.error);