Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DeepICF & NAIS issue with loss #12

Open
theconsolelogger opened this issue Nov 6, 2019 · 0 comments
Open

DeepICF & NAIS issue with loss #12

theconsolelogger opened this issue Nov 6, 2019 · 0 comments
Assignees
Labels
bug Something isn't working

Comments

@theconsolelogger
Copy link
Collaborator

theconsolelogger commented Nov 6, 2019

DeepICF and NAIS models generates the following error on line 215 for DeepICF:

loss, _ = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict)
and line 216 for NAIS:
loss, _ = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict)

ValueError: setting an array element with a sequence.

Screenshot_2019-11-06 Untitled

The properties for DeepICF is set to the following:

[DEFAULT]
data.input.path=neurec
data.input.dataset=ml-100k.rating
data.column.format=UIRT
data.convert.separator='\t'
data.convert.binarize.threshold=0
data.splitter=loo
data.splitterratio=[0.8,0.2]|float
rec.number.thread=20
rec.evaluate.neg=0
recommender=deepicf
topk=[10, 20, 30, 40]|int
gpu_id=0

pretrain_file=None

#Interval of evaluation
verbose=1

#adagrad,rmsprop,adam
learner=adam

#user: generate batches by user, fixed:batch_size: generate batches by batch size
batch_size=256

#Number of epochs.
epochs=300
#Size of each layer
layers=[64,32,16]|int

weight_size=16

embedding_size=16

#Index of coefficient of embedding vector
data_alpha=0

#Regularization for user and item embeddings.[1e-7,1e-7,0]
regs=[0.000001,0.000001,0.00001]|float
#L_2 regularization on each layer weights.
regw=[10,10]|int
#Index of coefficient of embedding vector
alpha=0

#Index of coefficient of sum of exp(A)
beta=0.5

#Number of negative instances to pair with a positive instance.
num_neg=4

learning_rate=0.001

#Activation for ReLU, sigmoid, tanh.
activation=Relu

#0 for deepICF_prod, 1 for deepicf_concat
algorithm=1

#Whether to perform batch norm (0 or 1)
batch_norm=1

#tnormal: truncated_normal_initializer, uniform: random_uniform_initializer,
#normal: random_normal_initializer, xavier_normal, xavier_uniform, 
#he_normal, he_uniform. Defualt: tnormal
embed_init_method=tnormal
weight_init_method=he_normal
bias_init_method=he_normal
stddev=0.01

The properties for NAIS is set to the following:

[DEFAULT]
data.input.path=neurec
data.input.dataset=ml-100k.rating
data.column.format=UIRT
data.convert.separator='\t'
data.convert.binarize.threshold=0
data.splitter=loo
data.splitterratio=[0.8,0.2]|float
rec.number.thread=20
rec.evaluate.neg=0
recommender=nais
topk=[10, 20, 30, 40]|int
gpu_id=0

pretrain=1

#Interval of evaluation
verbose=1

#adagrad,rmsprop,adam
learner=adam
#user: generate batches by user, fixed:batch_size: generate batches by batch size
batch_size=256

#Number of epochs.
epochs=100

weight_size=16

embedding_size=16

#Index of coefficient of embedding vector
data_alpha=0

#Regularization for user and item embeddings.
regs=[1e-7,1e-7,1e-5]|float

#Index of coefficient of embedding vector
alpha=0

#Index of coefficient of sum of exp(A)
beta=0.5

#Number of negative instances to pair with a positive instance.
num_neg=4

learning_rate=0.001

#Activation for ReLU, sigmoid, tanh.
activation=Relu

#0 for NAIS_prod, 1 for NAIS_concat
algorithm=0

is_pairwise=false
#pairwise: BPR(BPRFPMC),hinge,square
#pointwise: cross_entropy,square
loss_function=cross_entropy
#tnormal: truncated_normal_initializer, uniform: random_uniform_initializer,
#normal: random_normal_initializer, xavier_normal, xavier_uniform, 
#he_normal, he_uniform. Defualt: tnormal
embed_init_method=tnormal
weight_init_method=he_normal
stddev=0.01
pretrain_file=None
@theconsolelogger theconsolelogger added the bug Something isn't working label Nov 6, 2019
@theconsolelogger theconsolelogger changed the title DeepICF issue with loss DeepICF & NAIS issue with loss Nov 6, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants